Skip to main content
Log in

Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation

  • Using microbes for the regulation of heavy metal mobility at ecosystem and landscape scale
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We performed an experiment at pot scale to assess the effect of plant growth-promoting bacteria (PGPB) on the development of five plant species grown on a tailing dam substrate. None of the species even germinated on inoculated unamended tailing material, prompting use of compost amendment. The effect of inoculation on the amended material was to increase soil respiration, and promote elements immobilisation at plant root surface. This was associated with a decrease in the concentrations of elements in the leaching water and an increase of plant biomass, statistically significant in the case of two species: Agrostis capillaris and Festuca rubra. The experiment was repeated at lysimeter scale with the species showing the best development at pot scale, A. capillaris, and the significant total biomass increase as a result of inoculation was confirmed. The patterns of element distribution in plants also changed (the concentrations of metals in the roots of A. capillaris and F. rubra significantly decreased in inoculated treatments, while phosphorus concentration significantly increased in roots of A. capillaris in inoculated treatment at lysimeter scale). Measured variables for plant oxidative stress did not change after inoculations. There were differences of A. capillaris plant–soil system response between experimental scales as a result of different substrate column structure and plant age at the sampling moment. Soil respiration was significantly larger at lysimeter scale than at pot scale. Leachate concentrations of As, Mn and Ni had significantly larger concentrations at lysimeter scale than at pot scale, while Zn concentrations were significantly smaller. Concentrations of several metals were significantly smaller in A. capillaris at lysimeter scale than at pot scale. From an applied perspective, a system A. capillaris—compost—PGPB selected from the rhizosphere of the tailing dam native plants can be an option for the phytostabilisation of tailing dams. Results should be confirmed by investigation at field plot scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aafi NE, Brhada F, Dary M, Maltouf AF (2012) Rhizostabilisation of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. Int J Phytoremediat 14:261–274

    Article  Google Scholar 

  • Alef K (1991) Methodology handbook of soil microbiology: activity–biomass differentiation (in German). Ecomed-Verlag-Ges

  • Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40:295–301

    Article  CAS  Google Scholar 

  • Anandham R, Gandhi PI, SenthilKumar M, Sridar R, Nalayini P, Sa TM (2011) Sulfur-oxidizing bacteria: a novel bioinoculant for sulfur nutrition and crop production. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer-Verlag, Berlin, pp 81–108

    Chapter  Google Scholar 

  • Bacerra-Castro C, Monterroso C, Prieto-Fernández A et al (2012) Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217–218:350–359

    Article  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Burd GI, Dixon GD, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai W-A, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen G, Chen X, Yang Y et al (2011) Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X-ray fluorescence microscopy. Appl Environ Microb 77:4719–4727

    Article  CAS  Google Scholar 

  • Chen G, Sheng X, He L et al (2013) Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. J Hazard Mater 244–245:709–717

    Article  Google Scholar 

  • Coenye T, Laevens S, Willems A, Ohlen M, Hannant W, Govan JRW, Gillis M, Falsen E, Vandamme P (2001) Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107

    Article  CAS  Google Scholar 

  • Córdova S, Neaman A, González I et al (2011) The effect of lime and compost amendments on the potential for the revegetation of metal-polluted, acidic soils. Geoderma 166:135–144

    Article  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ et al (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  Google Scholar 

  • de-Bashan LE, Juan-Pablo H, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Dimpka C, Merten D, Svatos A et al (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  Google Scholar 

  • DIN 38414–S4 (1984) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Schlamm und Sedimente (Gruppe S). Bestimmung der Eluierbarkeit mit Wasser (S 4), (in German)

  • DIN ISO 11260 1997–05 (1997) Soil quality—Determination of effective cation exchange capacity and base saturation level using barium chloride solution. Deutsches Institut für Normung, Beuth Verlag, Berlin, D, (in German)

  • Ernst WHO (2005) Phytoextraction of mine wastes—options and impossibilities. Chem Erde Geochem 64:29–42

    Article  Google Scholar 

  • Faisal M, Hasnain S (2005) Chromate resistant Bacillus cereus augments sunflower growth by reducing toxicity of Cr (VI). J Plant Biol 48:187–194

    Article  CAS  Google Scholar 

  • Grandlic JC, Palmer MW, Maier RM (2009) Optimization of plant growth-promoting bacteria-assisted phytostabilization of mine tailings. Soil Biol Biochem 41(8):1734–1740

    Article  CAS  Google Scholar 

  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    Article  CAS  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  CAS  Google Scholar 

  • Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280

    Article  CAS  Google Scholar 

  • Huang L, Baumgartl T, Mulligan D (2012) Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Ann Bot 110:223–238

    Article  Google Scholar 

  • Iordache V, Ion S, Pohoaţă A (2009) Integrated modeling of metals biogeochemistry: potential and limits. Chem Erde Geochem 69:125–169

    Article  CAS  Google Scholar 

  • Iordache V, Lăcătusu R, Scrădeanu D, Onete M, Jianu D, Bodescu F, Neagoe A, Purice D, Cobzaru I (2012) Scale specific mechanisms of metals mobility in contaminated areas. In: Kothe E, Varma A (eds) Bio-geo-interactions in contaminated soils. Springer, Berlin Heidelberg, pp. 385–416

  • Jianu D, Iordache V, Soare B, Petrescu L, Neagoe A, Iacob CR, Orza R (2012) The role of mineralogy and geochemistry in hazard potential assessment of mining areas. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer, Berlin Heidelberg, pp 35–79

  • Kabata-Pendias A (2011) Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture: a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kidd P, Barceló J, Bernal MP et al (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kumar KV, Patra DD (2013) Influence of nickel and cadmium resistant PGPB on metal accumulation and growth responses of Lycopersicon esculentum plants grown in fly ash amended soil. Water Air Soil Pollut 224:1357–1366

    Article  Google Scholar 

  • Landmeyer JE (2011) Introduction to phytoremediation of contaminated groundwater: historical foundation, hydrologycal control and contaminant remediation. Springer, Dordrecht

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin–phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerata phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Madejon E, de Mora AP, Felipe E (2006) Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut 139:40–52

    Article  CAS  Google Scholar 

  • Mascher R, Fischer S, Scheiding W et al (2005) Exogenous 2-aminoethanol can diminish paraquat induced oxidative stress in barley (Hordeum vulgare L.). J Plant Growth Regul 45:103–112

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1991) The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv. and Agrostis capillaris L. New Phytol 119:291–297

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguébel J, Schroeder P (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008a) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008b) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Milagres AM, Machuca A, Napoleão D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37(1):1–6

    Article  CAS  Google Scholar 

  • Neagoe A, Ebena G, Carlsson E (2005) The effect of soil amendments on plant performance in an area affected by acid mine drainage. Chem Erde Geochem 65:115–129

    Article  CAS  Google Scholar 

  • Neagoe A, Merten D, Iordache V, Buechel G (2009) The effect of bioremediation methods involving different degrees of soil disturbance on the export of metals by leaching and by plant uptake. Chem Erde Geochem 69:57–73

    Article  CAS  Google Scholar 

  • Neagoe A, Stancu P, Nicoară A, Onete M, Bodescu F, Gheorghe R, Iordache V (2013a) Effects of arbuscular mycorrhizal fungi on Agrostis capillaris grown on amended mine tailing substrate at pot, lysimeter and field plot scales. Environ Sci Pollut Res. doi:10.1007/s11356-013-1908-2

    Google Scholar 

  • Neagoe A, Iordache V, Bergaman H, Kothe E (2013b) Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. J Plant Nutr Soil Sci 176(2):273–286. doi:10.1002/jpln.201200079

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of host plant root system. Appl Environ Microbiol 48:3795–3801

    Article  Google Scholar 

  • Petrisor IG, Dobrota S, Komnitsas K et al (2004) Artificial inoculation—perspectives in tailings phytostabilization. Int J Phytoremediat 6:1–15

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Prasad MNV (2006) Stabilization, remediation, and integrated management of metal-contaminated ecosystems by grasses (Poaceae). In: Prasad MNV, Sajwan KS, Ravi Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. CRC, Boca Raton, pp 405–424

    Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:LSMR-21

  • Schmidt A, Haferburg G, Schmidt A, Lischke U, Merten D, Gherghel F, Buchel G, Kothe E (2009) Heavy metal resistance to the extreme: streptomyces strains from a former uranium mining area. Chem Erde Geochem 69(S2):35–44

    Article  CAS  Google Scholar 

  • Schopfer P (1989) Experimental plant physiology. Springer

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  Google Scholar 

  • Shutcha MN, Mubemba MM, Faucon M et al (2010) Phytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments. Int J Phytoremediat 12:616–632

    Article  CAS  Google Scholar 

  • Sprocati AR, Chiara A, Tasso F, Fiore A, Marconi P, Langella F, Haferburg G, Nicoara A, Neagoe A, Kothe E (2013) Bioprospecting at former mining sites across Europe: microbial and functional diversity of soils. Environ Sci Pollut Res. doi:10.1007/s11356-013-1907-3

    Google Scholar 

  • Suciu I, Cosma C, Todică M, Bolboacă S, Jäntschi L (2008) Analysis of soil heavy metal pollution and pattern in Central Transylvania. Int J Mol Sci 9:434–453

    Article  CAS  Google Scholar 

  • Vassileva M, Serrano M, Bravo V et al (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes. Appl Microbiol Biotechnol 85:1287–1299

    Article  CAS  Google Scholar 

  • Viti C, Giovannetti L (2007) Bioremediation of soils polluted with hexavalent chromium using bacteria: a challenge. In: Shree NS, Tripathi DR (eds) Environmental bioremediation technologies. Springer, pp 57–76

  • Wernitznig S, Adlassnig W, Sprocati A, Turnau K, Neagoe A, Alisi C, Sassmann S, Nicoara A, Pinto V, Cremisini C, Lichtscheidl I (2013) Plant growth promotion by inoculation with selected bacterial strains versus mineral soil supplements. Environ Sci Pollut Res. doi:10.1007/s11356-013-1928-y

    Google Scholar 

  • Wu SC, Luo YM, Cheung KC (2006) Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: a laboratory study. Environ Pollut 144:765–773

    Article  CAS  Google Scholar 

  • Zeien H, Brümmer GW (1989) Chemical extraction for determination of heavy metal binding forms in soils (in German). Mittelign Dtsch Bodenkd Ges 59:505–510

    Google Scholar 

  • Zhang W, Huang Z, He L, Sheng X (2012) Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead–zinc mine tailings. Chemosphere 87:1171–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental work was performed within the FP7 project UMBRELLA, grant agreement 226870/2009 and data processing and article writing in grant 50/2012 ASPABIR funded by the Executive Agency for Higher Education and Research (UEFISCDI). We acknowledge Dr. Paulina Anastasiu for providing greenhouse space for the pot experiment, technician Roxana Donciu for a part of chemical analyses and student Vlad Dumitrescu for help with the lysimeter instalation setup and 3D representation. We express our gratitude for the constructive criticism of anonymous reviewers which greatly improved the quality of previous versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgil Iordache.

Additional information

Responsible editor: Philippe Garrigues

Nicoară and Neagoe contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Table 1

(DOC 43 kb)

Suppl. Table 2

(DOC 56 kb)

Suppl. Table 3

(DOC 46 kb)

Suppl. Table 4

(DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicoară, A., Neagoe, A., Stancu, P. et al. Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. Environ Sci Pollut Res 21, 6905–6920 (2014). https://doi.org/10.1007/s11356-013-2489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2489-9

Keywords

Navigation