Skip to main content

Advertisement

Log in

Pyrethroid pesticide effects on behavioral responses of aquatic isopods to danger cues

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study sought to evaluate the behavioral responses of non-target organisms in order to determine whether phototactic responses of isopods to danger cues are altered as a function of exposure to the pyrethroid pesticides λ-cyhalothrin and bifenthrin. Experiments conducted on Gnorimosphaeroma oregonensis identified sublethal behavioral responses to pyrethroids, λ-cyhalothrin and bifenthrin at concentrations 0.15 ng/mL, 0.025 ng/mL, and 0.005 ng/mL. Experimental setup tested isopod phototactic responses across six treatments: control, pyrethroid, hemolymph, predator, hemolymph + pyrethroid, and predator + pyrethroid. Isopods exhibited no preference for phototactic responses in the control and pyrethroid treatments. When exposed to danger cues (hemolymph or predator), isopods exhibited significant negative phototaxis, as expected. When exposure to danger cues was combined with pyrethroids, isopods again exhibited no preference for phototactic response. Experiments indicate that pyrethroids diminish isopod’s negatively phototactic response to danger cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amweg EL, Weston DP, Ureda NM (2004) Use and toxicity of pyrethroid pesticides in the Central Valley, California USA. Environ Toxicol Chem 24:966–972. doi:10.1897/04-146R1.1

    Article  Google Scholar 

  • Bruno JF, O’Connor MI (2005) Cascading effects of predator diversity and omnivory in a marine food web. Ecol Letters 8:1048–1056

    Article  Google Scholar 

  • Bundschuh M, Appeltauer A, Dabrunz A, Schulz R (2012) Combined effect of invertebrate predation and Sublethal pesticide exposure on behavior and survival of Asellus aquaticus (Crustacea; Isopoda). Arch Environ Contam Toxicol 63:77–85. doi:10.1007/s00244-0119743-2

    Article  CAS  Google Scholar 

  • Dicke M, Grostal P (2001) Chemical detection of natural enemies by arthropods: an ecological perspective. Annu Rev Ecol Syst 32:1–23

    Article  Google Scholar 

  • EPA (2013) Lower Duwamish Waterway Superfund Site. Environmental Protection Agency. http://www.epa.gov/region10/pdf/sites/ldw/pp/ldw_pp_022513.pdf. Accessed 20 March 2013

  • Fallang A, Denholm I, Horsberg TE, Williamson MS (2005) Novel point mutation in the sodium channel gene of pyrethroid-resistant sea lice Lepeophtheirus salmonis (Crustacea: Copepoda). Dis Aquat Org 65:129–136. doi:10.3354/dao065129

    Article  CAS  Google Scholar 

  • Giddings JM, Barber I, Warren-Hicks W (2009) Comparative aquatic toxicity of the pyrethroid insecticide lambda-cyhalothrin and its resolved isomer gamma-cyhalothrin. Ecotoxicology 8:239–249. doi:10.1007/s10646-008-0277-y

    Article  Google Scholar 

  • Hanazato T (1991) Pesticides as chemical agents inducing helmet formation in Daphnia ambigua. Freshwater Biol 26:419–424. doi:10.1111/j.1365-2427.1991.tb01408.x

    Article  CAS  Google Scholar 

  • Lui W, Gan JJ, Lee S, Kabashima JN (2004) Phase distribution of synthetic pyrethroids in runoff and stream water. Environ Tox and Chem 23:7–11. doi:10.1897/03-183

    Article  Google Scholar 

  • Macneale KH, Kiffney PM, Scholz NL (2010) Pesticides, aquatic food webs, and the conservation of Pacific Salmon. Front Ecol Environ 8:475–482. doi:10.1890/090142

    Article  Google Scholar 

  • Maund SJ, Campbell PJ, Giddings JM, Hamer MJ, Henry K, Pilling ED, Warinton JS, Wheeler JR (2011) Ecotoxicology of synthetic pyrethroids. Top Curr Chem 314:137–166. doi:10.1007/128_2011_260

    Article  Google Scholar 

  • Narahashi T (2002) Nerve membrane ion channels as target site of insecticides. Trends Pharmacol Sci 13:236–241. doi:10.2174/1389557023405927

    Google Scholar 

  • Nepomnyashikh VA, DeLonay AJ, Little EE (1996) Behavioral studies of contaminant effects on aquatic invertebrates: a review of Russian investigations. Environmental toxicology and risk assessment: biomarkers and risk assessment—fifth volume, ASTM STP 1306, David A Bengston and Diane S Henshel, Eds American Society for Testing and Materials

  • Relyea R, Hoverman J (2006) Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol Letters 9:1157–1171. doi:10.1111/j.1461-0248.2006.00966.x

    Article  Google Scholar 

  • Rittschof D, Hazlett BA (1997) Behavioural responses of hermit crabs to shell cues, predator haemolymph and body odour. J Mar Biol Assoc UK 77:737–751. doi:10.1017/S002531540003616X

    Article  Google Scholar 

  • Schroer AFW, Blgers JDM, Brock TCM, Matser AM, Maund SJ, Van den Brink PJ (2004) Comparison of laboratory single species and field population—level effects of the pyrethroid insecticide λ-cyhalothrin on freshwater invertebrates. Arch Environ Contam Toxicol 46:324–335

    Article  CAS  Google Scholar 

  • Smith TM, Stratton GW (1986) Effects of synthetic pyrethroid insecticides on non-target organisms. Residue Rev 97:93–120. doi:10.1007/978-1-4612-4934-4_4

    CAS  Google Scholar 

  • Soderlund DM, Knipple DC (2003) The molecular biology of knockdown resistance to pyrethroid insects. Insect Biochem Mol Biol 30:991–997. doi:10.1016/S0965-1748(03)00023-7

    Google Scholar 

  • Solomon KR, Giddings JM, Maund, SJ (2001) Probabilistic risk assessment of cotton pyrethroids: I. Distributional analysis of laboratory aquatic toxicity data. Environ Toxicol Chem 20(3):652–659

    Google Scholar 

  • Stewart AR, Luoma SN, Schlekat CE, Doblin MA, Hieb KA (2004) Food web pathway determines how selenium affects aquatic ecosystems: a San Francisco Bay case study. Environ Sci Technol 38:4519–4526

    Article  CAS  Google Scholar 

  • Styron CE, Burbanck WD (1967) Ecology of an aquatic isopod, Lirceus fontinalis Raf., emphasizing radiation effects. American Midland Naturalist 78: 389-415

  • Unkiewicz-Winiarczyk A, Gromysz-Kalkowska K (2012) Effect of temperature on toxicity of deltamethrin and oxygen consumption by Porcellio scaber Latr (Isopoda). Bull Environ Contam Toxicol 89:960–965. doi:10.1007/s00128-012-0814-5

    Article  CAS  Google Scholar 

  • Van den Brink PJ, Van Wijngaarden RP, Lucassen WGH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban (R) 4E (active ingredient chlorpyrifos) in outdoor experimental ditches. II: invertebrate community responses and recovery. Environ Toxicol Chem 15:1143–1153. doi:10.1002/etc.5620150719

    Article  Google Scholar 

  • Van Wijngaarden RP, Barber I, Brock TCM (2009) Effects of the pyrethroid insecticide gamma-cyhalothrin on aquatic invertebrates in laboratory and outdoor microcosm tests. Ecotoxicology 18:211–224. doi:10.1007/s10646-008-0274-1

    Article  Google Scholar 

  • Werner I, Moran K (2008) Effects of pyrethroid insecticides on aquatic organisms. In: Gan J, Spurlock F, Hendley P, Weston DP (eds) Synthetic pyrethroids: occurrence and behavior in aquatic environments. American Chemical Society, ACS Symposium Series 991, American Chemical Society, Washington, DC, USA, pp 310–335

    Chapter  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Weston DP, Holmes RW, You J, Lydy J (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39:9778–9784. doi:10.1021/es0506354

    Article  CAS  Google Scholar 

  • Weston DP, Asbell AM, Hecht SA, Scholz NL, Lydy MJ (2011) Pyrethroid insecticides in urban salmon streams of the Pacific Northwest. Environ Poll 159:3051–3056. doi:10.1016/j.envpol.2011.04.008

    Article  CAS  Google Scholar 

  • Woin P (1998) Short and long-term effects of the pyrethroid insecticide fenvalerate on an invertebrate pond community. Ecotoxicol Environ Saf 41:137–156. doi:10.1006/eesa.1998.1694

    Article  CAS  Google Scholar 

  • Wouters W, van den Bercken J (1978) Action of pyrethroids. Gen Pharmacol 9:387–398

    Article  CAS  Google Scholar 

  • Yang W, Gan J, Hunter W, Spurlock F (2006) Effect of suspended solids on bioavailability of pyrethroid insecticides. Environ Toxicol and Chem 25:1585–1591. doi:10.1897/05-448R.1

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge support provided by the M.J. Murdock Charitable Trust through a grant to the Seattle University College of Science and Engineering, and Pat and Mary Welch. We would like to thank Dr. Douglas Latch and John Berude for assistance with chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lindsay Whitlow.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, C.K., Poquette, S.R. & Whitlow, W.L. Pyrethroid pesticide effects on behavioral responses of aquatic isopods to danger cues. Environ Sci Pollut Res 21, 5211–5216 (2014). https://doi.org/10.1007/s11356-013-2475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2475-2

Keywords

Navigation