Environmental Science and Pollution Research

, Volume 21, Issue 9, pp 6221–6227 | Cite as

Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility

  • Nazaré CoutoEmail author
  • Janne Fritt-Rasmussen
  • Pernille E. Jensen
  • Mads Højrup
  • Ana P. Rodrigo
  • Alexandra B. Ribeiro
Research Article


A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Individual and synergistic effects of biostimulation were also tested, in parallel. An interim evaluation at the end of the first 42 days showed that biostimulation and active heating, as separate treatments, enhanced petroleum hydrocarbon (PHC) removal compared to natural attenuation. The coupling of both technologies was even more effective, corroborating the benefits of both techniques in a remediation strategy. However, between day 42 and day 168, there was an opposite remediation trend with all treatments suggesting a stabilization except for natural attenuation, where PHC values continued to decrease. This enforces the “self-purification” capacity of the system, even at low temperatures. Coupling biostimulation with active heating was the best approach for PHC removal, namely for a short period of time (42 days). The proposed remediation scheme can be considered a reliable option for faster PHC removal with low maintenance and using “waste heating” from an incineration facility.


Arctic Bioremediation Biostimulation Oil contamination Surplus heat 



The authors would like to thank Malene Grønvold for the laboratorial support and analysis as well as Sisimut incineration plant in Greenland. Nazaré Couto also thanks Fundação para a Ciência e a Tecnologia for her Post-Doc fellowship (SFRH/BPD/81122/2011) and Caixa Geral de Depósitos for a mobility action in the scope of the New Generation of Polar Scientists Program.

Supplementary material

11356_2013_2466_MOESM1_ESM.docx (305 kb)
ESM 1 (DOCX 304 kb)
11356_2013_2466_MOESM2_ESM.docx (185 kb)
ESM 2 (DOCX 184 kb)
11356_2013_2466_MOESM3_ESM.docx (39 kb)
ESM 3 (DOCX 38.8 kb)


  1. Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38(5):1265–1274. doi: 10.1021/es0305149 CrossRefGoogle Scholar
  2. Aislabie J, Saul D, Foght J (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10(3):171–179. doi: 10.1007/s00792-005-0498-4 CrossRefGoogle Scholar
  3. AMAP (1998) AMAP Assessment Report: Arctic pollution issues, Arctic Monitoring and Assessment Programme (AMAP) — Chapter 10. Oslo, NorwayGoogle Scholar
  4. Braddock JF, Ruth ML, Catterall PH, Walworth JL, McCarthy KA (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31(7):2078–2084. doi: 10.1021/es960904d CrossRefGoogle Scholar
  5. Chang W, Dyen M, Spagnuolo L, Simon P, Whyte L, Ghoshal S (2010) Biodegradation of semi- and non-volatile petroleum hydrocarbons in aged, contaminated soils from a sub-Arctic site: laboratory pilot-scale experiments at site temperatures. Chemosphere 80(3):319–326CrossRefGoogle Scholar
  6. Chang W, Whyte L, Ghoshal S (2011) Comparison of the effects of variable site temperatures and constant incubation temperatures on the biodegradation of petroleum hydrocarbons in pilot-scale experiments with field-aged contaminated soils from a cold regions site. Chemosphere 82(6):872–878CrossRefGoogle Scholar
  7. Delille D, Coulon F, Pelletier E (2004) Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils. Microb Ecol 47(4):407–415. doi: 10.1007/s00248-003-2024-5 CrossRefGoogle Scholar
  8. Delille D, Pelletier E, Coulon F (2007) The influence of temperature on bacterial assemblages during bioremediation of a diesel fuel contaminated sub-Antarctic soil. Cold Reg Sci Technol 48(2):74–83. doi: 10.1016/j.coldregions.2005.09.001 CrossRefGoogle Scholar
  9. Dias RL, Ruberto L, Hernández E, Vázquez SC, Lo Balbo A, Del Panno MT, Mac Cormack WP (2012) Bioremediation of an aged diesel oil-contaminated Antarctic soil: evaluation of the “on site” biostimulation strategy using different nutrient sources. Int Biodeterior Biodegrad 75:96–103CrossRefGoogle Scholar
  10. Ferguson SH, Powell SM, Snape I, Gibson JAE, Franzmann PD (2008) Effect of temperature on the microbial ecology of a hydrocarbon-contaminated Antarctic soil: Implications for high temperature remediation. Cold Reg Sci Technol 53(1):115–129CrossRefGoogle Scholar
  11. Filler DM, Lindstrom JE, Braddock JF, Johnson RA, Nickalaski R (2001) Integral biopile components for successful bioremediation in the Arctic. Cold Reg Sci Technol 32(2–3):143–156CrossRefGoogle Scholar
  12. Liu W, Luo Y, Teng Y, Li Z, Ma L (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32(1):23–29. doi: 10.1007/s10653-009-9262-5 CrossRefGoogle Scholar
  13. Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74(5):381–389. doi: 10.1002/(sici)1097-4660(199905)74:5<381::aid-jctb59>;2-0 CrossRefGoogle Scholar
  14. McCarthy K, Walker L, Vigoren L, Bartel J (2004) Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg Sci Technol 40(1–2):31–39CrossRefGoogle Scholar
  15. Mohn W, Radziminski C, Fortin MC, Reimer K (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl Microbiol Biotechnol 57(1–2):242–247. doi: 10.1007/s002530100713 Google Scholar
  16. Paudyn K, Rutter A, Kerry Rowe R, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53(1):102–114CrossRefGoogle Scholar
  17. REFLAB (1998) Bestemmelse af olie i jord, Gaskromatografisk metode. Reflab metode 1:1998, 1.udgave (In Danish).Google Scholar
  18. Rike AG, Haugen KB, Børresen M, Engene B, Kolstad P (2003) In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg Sci Technol 37(2):97–120CrossRefGoogle Scholar
  19. Sanscartier D, Laing T, Reimer K, Zeeb B (2009a) Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere 77(8):1121–1126CrossRefGoogle Scholar
  20. Sanscartier D, Zeeb B, Koch I, Reimer K (2009b) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55(1):167–173CrossRefGoogle Scholar
  21. Walworth J, Pond A, Snape I, Rayner J, Ferguson S, Harvey P (2007) Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg Sci Technol 48(2):84–91. doi: 10.1016/j.coldregions.2006.07.001 CrossRefGoogle Scholar
  22. Weatherspark (2012) Sisimiut,, last visited 28.08.2012.
  23. Yang S-Z, Jin H-J, Wei Z, He R-X, Ji Y-J, Li X-M, Yu S-P (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nazaré Couto
    • 1
    Email author
  • Janne Fritt-Rasmussen
    • 2
    • 3
  • Pernille E. Jensen
    • 2
  • Mads Højrup
    • 2
  • Ana P. Rodrigo
    • 2
    • 4
  • Alexandra B. Ribeiro
    • 1
  1. 1.CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
  3. 3.Arctic Research Centre, Department of BioscienceAarhus UniversityRoskildeDenmark
  4. 4.Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations