Skip to main content
Log in

Quantifying interactions between propranolol and dissolved organic matter (DOM) from different sources using fluorescence spectroscopy

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Beta blockers are widely used pharmaceuticals that have been detected in the environment. Interactions between beta blockers and dissolved organic matter (DOM) may mutually alter their environmental behaviors. To assess this potential, propranolol (PRO) was used as a model beta blocker to quantify the complexation with DOM from different sources using the fluorescence quenching titration method. The sources of studied DOM samples were identified by excitation–emission matrix spectroscopy (EEMs) combined with fluorescence regional integration analysis. The results show that PRO intrinsic fluorescence was statically quenched by DOM addition. The resulting binding constants (log K oc) ranged from 3.90 to 5.20, with the surface-water-filtered DOM samples claiming the lower log K oc and HA having the highest log K oc. Log K oc is negatively correlated with the fluorescence index, biological index, and the percent fluorescence response (P i,n) of protein-like region (P I,n) and the P i,n of microbial byproduct-like region (P II,n) of DOM EEMs, while it is correlated positively with humification index and the P i,n of UVC humic-like region (P III,n). These results indicate that DOM samples from allochthonous materials rich in aromatic and humic-like components would strongly bind PRO in aquatic systems, and autochthonous DOM containing high protein-like components would bind PRO more weakly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai Y, Wu F, Liu C, Guo J, Fu P, Li W, Xing B (2008) Interaction between carbamazepine and humic substances—a fluorescence spectroscopy study. Environ Res China 27:95–102

    CAS  Google Scholar 

  • Baker A, Inverarity R, Charlton M, Richmond S (2003) Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England. Environ Pollut 124:57–70

    Article  CAS  Google Scholar 

  • Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280

    Article  CAS  Google Scholar 

  • Bisby R, Botchway S, Crisostomo A, Parker A, Scherer K (2012) Fluorescence lifetime imaging of propranolol uptake in living glial C6 cells. J Spectroscopy 27:533–540

    Article  CAS  Google Scholar 

  • Black JW, Stephenson JS (1962) Pharmacology of a new adrenergic betareceptor blocking compound. Lancet 2:311–314

    Article  CAS  Google Scholar 

  • Brown A, McKnight DM, Chin Y-P, Roberts EC, Uhle M (2004) Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica. Mar Chem 89:327–337

    Article  CAS  Google Scholar 

  • Burdige DJ, Kline SW, Chen W (2004) Fluorescent dissolved organic matter in marine sediment pore waters. Mar Chem 89:289–311

    Article  CAS  Google Scholar 

  • Carmosini N, Lee LS (2009) Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. Chemosphere 77:813–820

    Article  CAS  Google Scholar 

  • Chen J, LeBoeuf EJ, Dai S, Gu B (2003a) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 639–647

  • Chen W, Westerhoff P, Leenheer JA, Booksh K (2003b) Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710

    Article  CAS  Google Scholar 

  • Chin YP, Aiken GR, Loughlin EO (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858

    Article  CAS  Google Scholar 

  • Danielsen KM, Chin Y, Buterbaugh JS, Gustafson TL, Traina SJ (1995) Solubility enhancement and fluorescence quenching of pyrene by humic substances: the effect of dissolved oxygen on quenching processes. Environ Sci Technol 29:2162–2165

    Article  CAS  Google Scholar 

  • Gauthier TD, Shane EC, Guerln WF, Seltz WR, Grant CL (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ Sci Technol 20:1162–1166

    Article  CAS  Google Scholar 

  • Gjessing ET (1970) Ultrafiltration of aquatic humus. Environ Sci Technol 4:437–446

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66:1494–1501

    Article  CAS  Google Scholar 

  • Guerard JJ, Miller PL, Trouts TD, Chin YP (2009) The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants. Aquat Sci 71:160–169

    Article  CAS  Google Scholar 

  • Henderson RK, Baker A, Murphy KR, Hambly A, Stuetz RM (2009) Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Res 2009:863–881

    Article  Google Scholar 

  • Hernandez-Ruiz S, Abrell L, Wickramasekara S, Chefetz B, Chorover J (2012) Quantifying PPCP interaction with dissolved organic matter in aqueous solution: combined use of fluorescence quenching and tandem mass spectrometry. Water Res 46:943–954

    Article  CAS  Google Scholar 

  • Hiriart-Baer VP, Diep N, Smith REH (2008) Dissolved organic matter in the Great Lakes: role and nature of allochthonous material. J Great Lakes Res 34:383–394

    Article  CAS  Google Scholar 

  • Huggett DB, Brooks BW, Peterson B, Foran CM, Schlenk D (2002) Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (b-blockers) on aquatic organisms. Arch Environ Contam Toxicol 43:229–235

    Article  CAS  Google Scholar 

  • Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719

    Article  CAS  Google Scholar 

  • Hunt JF, Ohno T (2007) Characterization of fresh and decomposed dissolved organic matter using excitation–emission matrix fluorescence spectroscopy and multiway analysis. J Agric Food Chem 55:2121–2128

    Article  CAS  Google Scholar 

  • Karthikeyan KG, Chorover J (2002) Humic acid complexation of basic and neutral polycyclic aromatic compounds. Chemosphere 48:10

    Article  Google Scholar 

  • Kibbey TCG, Paruchuri R, Sabatini DA, Chen L (2007a) Adsorption of beta blockers to environmental surfaces. Environ Sci Technol 41:8

    Article  Google Scholar 

  • Kibbey TG, Rajivparuchuri S, Lixiachen D (2007b) Adsorption of beta blockers to environmental surfaces. Environ Sci Technol 41:5349–5356

    Article  CAS  Google Scholar 

  • Kwon J, Armbrust KL (2008) Aqueous solubility, n-octanol–water partition coefficient, and sorption of five selective serotonin reuptake inhibitors to sediments and soils. Bull Environ Contam Toxicol 81:128–135

    Article  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd ed. Springer, New York, pp. 284–285

  • Laor Y, Rebhun M (2002) Evidence for nonlinear binding of PAHs to dissolved humic acids. Environ Sci Technol 36:955–961

    Article  CAS  Google Scholar 

  • Lee CL, Kuo LJ (1999) Quantification of the dissolved organic matter effect on the sorption of hydrophobic organic pollutant: application of an overall mechanistic sorption model. Chemosphere 38:807–821

    Article  CAS  Google Scholar 

  • Leenheer J, Rostad C, Gates P, Furlong E, Ferrer I (2001) Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry. Anal Chem 73:1461–1471

    Article  CAS  Google Scholar 

  • Lu R, Sheng G-P, Liang Y, Li W-H, Tong Z-H, Chen W, Yu H-Q (2012) Characterizing the interactions between polycyclic aromatic hydrocarbons and fulvic acids in water. Environ Sci Pollut Res 20:2220–2225

    Article  Google Scholar 

  • Mcknight MD, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    Article  CAS  Google Scholar 

  • Miller PL, Chin YP (2005) Indirect photolysis promoted by natural and engineered wetland water constituents: processes leading to alachlor degradation. Environ Sci Technol 39:4454–4462

    Article  CAS  Google Scholar 

  • Ohno T, Chorover J, Omoike A, Hunt J (2007) Molecular weight and humification index as predictors of adsorption for plant- and manure-derived dissolved organic matter to goethite. Eur J Soil Sci 58:125–132

    Article  Google Scholar 

  • Owen S, Giltrow E, Huggett D, Hutchinson T, Saye J, Winter M, Sumpter J (2007) Comparative physiology, pharmacology and toxicology of β-blockers: mammals versus fish. Aquat Toxicol 82:145–162

    Article  CAS  Google Scholar 

  • Pan B, Ghosh S, Xing B (2007a) Nonideal binding between dissolved humic acids and polyaromatic hydrocarbons. Environ Sci Technol 41:6472–6478

    Article  CAS  Google Scholar 

  • Pan B, Xing B, Liu W, Xing G, Tao S (2007b) Investigating interactions of phenanthrene with dissolved organic matter: limitations of Stern–Volmer plot. Chemosphere 69:1555–1562

    Article  CAS  Google Scholar 

  • Pan B, Ning P, Xing B (2008) Part IV—sorption of hydrophobic organic contaminants. Environ Sci Pollut Res 15:554–564

    Article  CAS  Google Scholar 

  • Pan B, Liu Y, Xiao D, Wu F, Wu M, Zhang D, Xing B (2012) Quantitative identification of dynamic and static quenching of ofloxacin by dissolved organic matter using temperature-dependent kinetic approach. Environ Pollut 161:192–198

    Article  CAS  Google Scholar 

  • Rashid M, King L (1969) Molecular weight distribution measurements on humic and fulvic acid fractions from marine clays on the Scotian Shelf. Geochim Cosmochim Acta 33:5

    Article  Google Scholar 

  • Remucal CK, Cory RM, Sander M, McNeill K (2012) Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry. Environ Sci Technol 46:9350–9359

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S (2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFA analysis. Limnol Oceanogr 50:686–697

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254

    Article  CAS  Google Scholar 

  • Stedmon CA, Thomas DN, Granskog M, Kaartokallio H, Papadimitriou S, Kuosa H (2007) Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins? Environ Sci Technol 41:7273–7279

    Article  CAS  Google Scholar 

  • Sun WL, Ni JR, Xu N, Sun LY (2007) Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors. Chemosphere 66:700–707

    Article  CAS  Google Scholar 

  • Thipperudrappa J, Hanagodimath SM (2013) Fluorescence quenching of 1, 4-bis [2-(2-methylphenyl) ethenyl]-benzene by aniline in benzene–acetonitrile mixtures. Int J Life Sci Pharm Res 3: 77–87

    Google Scholar 

  • Toda N (2003) Vasodilating β-adrenoceptor blockers as cardiovascular therapeutics. Pharmacol Ther 100:215–234

    Article  CAS  Google Scholar 

  • Valeur B (2002) Molecular fluorescence. Principles and applications. Wiley-VCH, Weinheim, pp. 77–78

  • Wu F, Bai Y, Mu Y, Pan B, Xing B, Lin Y (2013) Fluorescence quenching of fulvic acids by fullerene in water. Environ Pollut 172:100–107

    Article  CAS  Google Scholar 

  • Xiaoli C, Guixiang L, Xin Z, Yongxia H, Youcai Z (2012) Fluorescence excitation–emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages. Waste Manag 32:438–447

    Article  Google Scholar 

  • Yamamoto H, Liljestrand H, Shimizu Y, Morita M (2003) Effects of physical–chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates. Environ Sci Technol 37:12

    Article  Google Scholar 

  • Zhang L, Luo L, Zhang S (2012) Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals. Colloids Surf A Physicochem Eng Asp 406:84–90

    Article  CAS  Google Scholar 

  • Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:6

    Article  Google Scholar 

  • Zuccato E, Castiglioni S, Fanelli R (2005) Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater 122:205–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Scientific Foundation of China (21377031), Science and Technology Planning Project of Guangdong Province, China (2011B030800013), and the Fundamental Research Funds for Jiaying University, China (12KJ02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Peng or Guoguang Liu.

Additional information

Responsible editor: Céline Guéguen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, N., Wang, K., Liu, G. et al. Quantifying interactions between propranolol and dissolved organic matter (DOM) from different sources using fluorescence spectroscopy. Environ Sci Pollut Res 21, 5217–5226 (2014). https://doi.org/10.1007/s11356-013-2436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2436-9

Keywords

Navigation