Environmental Science and Pollution Research

, Volume 21, Issue 8, pp 5367–5378 | Cite as

Accumulated sediments in a detention basin: chemical and microbial hazard assessment linked to hydrological processes

  • C. Sébastian
  • S. Barraud
  • S. Ribun
  • A. Zoropogui
  • D. Blaha
  • C. Becouze-Lareure
  • G. Lipeme Kouyi
  • B. Cournoyer
Chemical, microbiological, spatial characteristics and impacts of contaminants from urban catchments: CABRRES project

Abstract

Accumulated sediments in a 32,000-m3 detention basin linked to a separate stormwater system were characterized in order to infer their health hazards. A sampling scheme of 15 points was defined according to the hydrological behaviour of the basin. Physical parameters (particle size and volatile organic matter content) were in the range of those previously reported for stormwater sediments. Chemical analyses on hydrocarbons, PAHs, PCBs and heavy metals showed high pollutant concentrations. Microbiological analyses of these points highlighted the presence of faecal indicator bacteria (Escherichia coli and intestinal enterococci) and actinomycetes of the genus Nocardia. These are indicative of the presence of human pathogens. E. coli and enterococcal numbers in the sediments were higher at the proximity of the low-flow gutter receiving waters from the catchment. These bacteria appeared to persist over time among urban sediments. Samples highly contaminated by hydrocarbons were also shown to be heavily contaminated by these bacteria. These results demonstrated for the first time the presence of Nocardial actinomycetes in such an urban context with concentrations as high as 11,400 cfu g−1.

Keywords

Bacterial pathogens Detention basin E. coli Efficiency Micropollutants Nocardia Sediments 

References

  1. Arnone RD, Walling JP (2007) Waterborne pathogens in urban watersheds. J Water Health 5(1):149–162CrossRefGoogle Scholar
  2. Barraud S, Gibert J, Winiarski T, Bertrand-Krajewski JL (2002) Implementation of monitoring system to measure impact of stormwater runoff infiltration. Water Sci Technol 45(3):203–210Google Scholar
  3. Becouze-Lareure C (2010) Caractérisation et estimation des flux de substances prioritaires dans les rejets urbains pas temps de pluie sur deux bassins versants expérimentaux (Assessment of priority substances fluxes in stormwater discharges in two sewers systems and in atmospheric deposition). PhD thesis. INSA de Lyon, Lyon, France. 273 pp, In FrenchGoogle Scholar
  4. Benbelkacem H, Desjardin-Blanc V (2008) Rapport sur l'étude du prétraitement biologique des résidus de curage de bassin de rétention (Report on biologic pre-treatment on stormwater detention pond sediments). Programme ECOPLUIES. Délivrable D-B1. (In French). http://www.graie.org/ecopluies. Accessed 11 April 2012
  5. Benoist A, Lijklema L (1990) Distribution of sedimentation rates of suspended solids and heavy metals in combined sewer overflows. Water Sci Technol 22(10/11):61–68Google Scholar
  6. Bertrand-Krajewski JL (2004) TSS concentration in sewers estimated from turbidity measurements by means of linear regression accounting for uncertainties in both variables. Water Sci Technol 50(11):81–88Google Scholar
  7. Durand C, Ruban V, Amblès A, Oudot J (2004) Characterization of the organic matter of sludge: determination of lipids, hydrocarbons and PAHs from road retention/infiltration ponds in France. Environ Pollut 132:375–384CrossRefGoogle Scholar
  8. EC (2000) Directive of the European Parliament and of the Council no. 2000/60/EC establishing a framework for the community action in the field of water policy. Joule 327:1–72Google Scholar
  9. Ellis B, Marsalek J, Chocat B (2005) Article 97: urban water quality. In: Anderson G. Encyclopedia of hydrological science. London: John Wiley & sons. pp. 1479–1491Google Scholar
  10. Flores-Rodriguez J, Bussy AL, Thevenot DR (1993) Toxic metals in urban runoff: physico-chemical mobility assessment using speciation schemes. In: Proceedings of 6th international conference on urban drainage, Niagara Falls, pp 182–187Google Scholar
  11. Fortin N, Beaumier D, Lee K, Greer CW (2004) Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J Microbiol Methods 56:181–191CrossRefGoogle Scholar
  12. Gonzalez-Merchan C, Barraud S (2011) Characterization and main factors affecting clogging evolution of the bottom of stormwater infiltration systems. In: Proceedings of the 12th international conference on urban drainage (ICUD), Porto Alegre, BrazilGoogle Scholar
  13. Gourmelon M, Caprais MP, Mieszkin S, Marti R, Wéry N, Jardé E, Derrien M, Jadas-Hécart A, Communal PY, Jaffrezic A, Pourcher AM (2010) Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Res 44(16):4812–4824CrossRefGoogle Scholar
  14. Gromaire-Mertz MC, Chebbo G, Saad M (1998) Origins and characteristics of urban wet weather pollution in combined sewer systems: the experimental urban catchment “Le Marais” in Paris. Water Sci Technol 37(1):35–43CrossRefGoogle Scholar
  15. Guo J (1997) Sediment and heavy metal accumulation in dry stormwater detention basin. J Water Resour Plann Manag Div 123(5):295–301CrossRefGoogle Scholar
  16. Haugland RA, Shawn C, Siefring SC, Wynner LJ, Brenner KP, Dufour AP (2005) Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Res 39(4):559–568CrossRefGoogle Scholar
  17. Ishii S, Ksoll WB, Hicks RE, Sawodsky MJ (2006) Presence and growth of naturalized E. coli in temperate soils from lake superior watersheds. Appl Environ Microbiol 72(1):612CrossRefGoogle Scholar
  18. Jacopin C, Bertrand-Krajewski JL, Desbordes M (1999) Characterization and settling of solids in an open, grassed, stormwater sewer network detention basin. Water Sci Technol 39(2):135–144CrossRefGoogle Scholar
  19. Jensen S, Johnels AG, Olsson M, Otterlind G (1969) DDT and PCB in marine animals from Swedish Waters. Nature 224:247–250CrossRefGoogle Scholar
  20. Kari FG, Herrmann R (1989) Abspülung von organischen Spurenschadstoffen und Schwermetallen aus einem städtischen Einzugsgebiet: Ganglinienanalyse, Korngrössenzuornun und Metallspeziesauftrennung (Urban area organic pollutant and heavy metal wash-off: hydrograph analysis, particle size distribution and metal speciation). Deutsche Gewässerkundliche Mitteilungen 33(5/6):172–183, In GermanGoogle Scholar
  21. Khan ZU, Neil L, Chandy R et al (1997) Nocardia asteroides in the soil of Kuwait. Mycopathologia 137:159–163CrossRefGoogle Scholar
  22. Kukkonen J, Landrum PF (1996) Distribution of organic carbon and organic xenobiotics among different particle-size fractions in sediments. Chemosphere 32(6):1063–1076CrossRefGoogle Scholar
  23. Lána R, Vávrová M, Cáslavský J, Skoumalová M, Bilková A, Sucman E (2008) PCBs in samples from the environment of the Southern Moravia Region, Czech Republic. Bull Environ Contam Toxicol 81(6):574–577CrossRefGoogle Scholar
  24. Laurent FJ, Provost F, Boiron P (1999) Rapid identification of clinically relevant Nocardia species to genus level by 16S rRNA gene PCR. J Clin Microbiol 37:99–102Google Scholar
  25. Le Coustumer S (2008) Colmatage et rétention des éléments traces métalliques dans les systèmes d'infiltration des eaux pluviales (Clogging and retention of metallic trace elements in stormwater infiltration systems). PhD thesis. INSA de Lyon, Lyon, France. 427 p, In FrenchGoogle Scholar
  26. Le TN, Mikolasch A, Awe S, Sheikhany H, Klenk HP, Schauer F (2010) Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50:241–253CrossRefGoogle Scholar
  27. Lee PK, Touray JC, Baillif P, Ildefonse JP (1997) Heavy metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France. Sci Total Envi 201:1–15CrossRefGoogle Scholar
  28. Marsalek J, Marsalek PM (1997) Characteristics of sediments from a stormwater management pond. Water Sci Technol 36(8–9):117–122CrossRefGoogle Scholar
  29. Marsalek J, Watt WE, Henry D (1992) Retroffiting stormwater ponds for water quality control. Water Pollut Res J 27(2):403–422Google Scholar
  30. Musy A, Soutter M (1991) Physique du sol (soil physics). Collection Gérer l'environnement, 6. Presses Polytechniques et Universitaires Romandes, Lausanne, p 335, In FrenchGoogle Scholar
  31. NF EN 12879 (1997). Caractérisation des boues—Détermination de la perte au feu de la matière sèche (Characterization of sludges—determination of dry residue loss in ignition)Google Scholar
  32. NF EN ISO 11465 (1994) Qualité du sol—Détermination de la teneur pondérale en matière sèche et en eau—Méthode gravimétrique. (Soil quality—determination of the weight content in dry matter and in water—gravimetric method)Google Scholar
  33. NF EN ISO 11885 (2009) Qualité de l'eau—Dosage d'éléments choisis par spectroscopie d'émission optique avec plasma induit par haute fréquence (ICP-OES) (Water quality—determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES))Google Scholar
  34. NF EN ISO 7899-2 (2000) Qualité de l'eau—Recherche et dénombrement des entérocoques intestinaux—Partie 2 : méthode par filtration sur membrane (Water quality—search and counting of intestinal enterococci—part 2: method by membrane filtration)Google Scholar
  35. NF EN ISO 9308-1 (2000) Qualité de l'eau—Recherche et dénombrement des Escherichia coli et des bactéries coliformes—Partie 1: méthode par filtration sur membrane (Water quality—search and counting of Escherichia coli and coliform bacterium—part 1: method by membrane filtration)Google Scholar
  36. NF ISO 13320 (2009) Analyse granulométrique—Méthodes par diffraction laser (Particles size distribution—laser diffraction method)Google Scholar
  37. NF ISO X31-501 (1992) Mesure de la masse volumique apparente d'un échantillon de sol non remanié—Méthode du cylindre (Bulk density measurement of soil samples—cylinder method)Google Scholar
  38. XPNF X33-012 (2000) Caractérisation des boues—Dosage des hydrocarbures aromatiques polycycliques (HAP) et des polychlorobiphényles (PCB) (Characterization of sludges—determination of PAHs and PCBs)Google Scholar
  39. NMHSPE (2000) Circular on target values and intervention values for soil remediation. The Netherlands Ministry of Housing, Spatial Planning and the Environment. http://www.vrom.nl/. Accessed 11 April 2012
  40. Persson J, Wittgren HB (2003) How hydrological and hydraulic conditions affect performance of ponds? Ecol Eng 21(4–5):259–269CrossRefGoogle Scholar
  41. Petavy F (2007) Traitement et valorisation des sédiments de l'assainissement pluvial. (Treatment and re-use of stormwater sediments). PhD thesis, Ecole centrale de Nantes. 281 pp, In FrenchGoogle Scholar
  42. Petavy F, Ruban V, Conil P (2009) Treatment of stormwater sediments. Efficiency of an attrition scrubber—laboratory and pilot-scale studies. Chem Eng J 145:475–482CrossRefGoogle Scholar
  43. Rocher V, Azimi S, Moilleron R, Chebbo G (2004) Hydrocarbons and heavy metals in the different sewer deposits in the “Le Marais” catchment (Paris, France): stocks, distributions and origins. Sci Total Envi 323(1–3):107–122CrossRefGoogle Scholar
  44. Rodriguez-Nava V, Khan ZU, Potter G, Kroppenstedt RM, Boiron P, Laurent F (2007) Nocardia coubleae sp. nov., isolated from oil-contaminated Kuwaiti soil. Int J Syst Evol Microbiol 57:1482–1486CrossRefGoogle Scholar
  45. Ruban V, Bechet B, Clozel B, Conil P, Delolme C, Durand C, Heyvang I, Viau JY (2005) Characterization and management of the sediments from stormwater sewage systems. LCPC, NantesGoogle Scholar
  46. Ruban V, Arnaud G, Viau J-Y, Conil P (2009) Traitement et valorisation des sédiments issus des bassins de gestion des eaux pluviales (Treatment and valorization of stormwater detention basin sediments). Techniques Science et Méthodes 6:101–107, In FrenchCrossRefGoogle Scholar
  47. Saubolle MA, Sussland D (2003) Nocardiosis: review of clinical and laboratory experience. J Clin Microbiol 41(10):4497–4501CrossRefGoogle Scholar
  48. Scholes L, Chutes RBE, Revitt DM, Forshaw M, Purchase D (1998) The treatment of metals in urban runoff by constructed wetlands. Sci Total Envi 214(1–3):211–219CrossRefGoogle Scholar
  49. Somes NLG, Fabian J, Wong THF (2000) Tracking pollutant detention in constructed stormwater wetlands. Urban Water 2(1):29–37CrossRefGoogle Scholar
  50. Strecker E, Quigley M, Urbonas B, Jones J, Clary J, O'Brien J (2004) Urban stormwater BMP performance: recent findings from the International Stormwater BMP Database Project. In: Proceedings of the 5th NOVATECH conference, Lyon, FranceGoogle Scholar
  51. Thevenot DR (1992) Urban water pollution: origins, levels and pollutant transport. ENPC Course, Paris, p 13Google Scholar
  52. Thi Nhi-Cong I, Mikolasch A, Awe S, Sheikhany H, Klenk HP, Shauer F (2010) Oxidation of aliphatic, branched chain and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50(3):214–253Google Scholar
  53. Torres A (2008) Décantation des eaux pluviales dans un ouvrage reel de grande taille: elements de réflexion pour le suivi et la modélisation (Stormwater settling process within a full-scale sedimentation system: elements of reflexion for monitoring and modeling). PhD thesis, INSA de Lyon, , Lyon (France). 348 pp, In FrenchGoogle Scholar
  54. Torres A, Hasler M, Bertrand-Krajewski JL (2007) Spatial heterogeneity and inter-event variability of sediment settling distributions in a stormwater retention tank. In: Proceedings of 6th NOVATECH conference, Lyon, FranceGoogle Scholar
  55. Weinstein JE, Crawford KD, Garner TR, Flemming AJ (2010) Screening-level ecological, and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA. J Hazard Mater 178:906–916CrossRefGoogle Scholar
  56. Winiarski T, Delolme C, Bedell JP, Ghidini M, Crosnier J, Bobillon G (2001) Profils chimique biologique et perméabilité du bassin Django Reinhardt (Chemical, biological and permeability features of Django Reinhardt basin). Rapport OTHU, Vaulx en Velin, Ecole Nationale des travaux publics de l'Etat, In FrenchGoogle Scholar
  57. Yan H (2013) Experiments and 3D modelling of hydrodynamics, sediment transport, settling and resuspension under unsteady conditions in an urban stormwater detention basin. PhD thesis, INSA de Lyon. 226 ppGoogle Scholar
  58. Yousef YA, Lin LY, Win L, Hvitved-Jacobsen T (1994) Transport of heavy metals through accumulated sediments in wet ponds. Sci Total Environ 146–147:485–491Google Scholar
  59. Yousef YA, Hvitved-Jacobsen T, Harper HH, Lin LY (1990) Heavy metal accumulation and transport through detention ponds receiving highway runoff. Sci Total Envi 93:433–440CrossRefGoogle Scholar
  60. Zhao W, Zhong Y, Yuan H, Wang J, Zheng H, Wang Y, Cen X, Xu F, Bai J, Han X, Lu G, Zhu Y, Shao Z, Yan H, Li C, Peng N, Zhang Z, Zhang Y, Lin W, Fan Y, Qin Z, Hu Y, Zhu B, Wang S, Ding X, Zhao GP (2010) Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res 20:1096–1108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Sébastian
    • 1
  • S. Barraud
    • 1
  • S. Ribun
    • 2
  • A. Zoropogui
    • 2
  • D. Blaha
    • 2
  • C. Becouze-Lareure
    • 1
  • G. Lipeme Kouyi
    • 1
  • B. Cournoyer
    • 2
  1. 1.Université de LyonINSA de Lyon, LGCIEVilleurbanne CedexFrance
  2. 2.Université de LyonResearch Group “Bacterial Opportunistic Pathogens and Environment”, UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro SupVilleurbanneFrance

Personalised recommendations