Skip to main content

Advertisement

Log in

On understanding the land–ocean CO2 contrast over the Bay of Bengal: A case study during 2009 summer monsoon

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ship-based observations of atmospheric carbon dioxide (CO2) concentration over the Bay of Bengal (BoB) between 17 July 2009 and 17 Aug 2009 offered an excellent opportunity to evaluate the land–ocean contrast of surface CO2 and facilitated its comparison with model simulated CO2 concentrations. Elevated values of CO2 with large variability near the coastal region and relatively low values with correspondingly lower variability over the open ocean suggest that this observed CO2 variability over the ocean essentially captures the differences in terrestrial and oceanic CO2 fluxes. Although the region under investigation is well known for its atmospheric intraseasonal oscillations of Indian summer monsoon during July and August, the limited duration of observations performed from a moving ship in a research cruise, is not able to capture any high-frequency variability of atmospheric CO2 concentrations. But band-passed sea surface temperature and wind anomalies do indicate strong intraseasonal variability over the study region during the observational period. The synoptic data, albeit quite short in duration, thus offer a clear benchmark for abrupt variability of CO2 concentration between land and ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alory G, Meyers G (2009) Warming of the upper equatorial Indian Ocean and changes in the heat budget (1960–99). J Climate 22:93–113. doi:10.1175/2008JCLI2330.1

    Article  Google Scholar 

  • Ashok K, Sabin TP, Swapna P, Murtugudde RG (2012) Is a global warming signature emerging in the tropical Pacific? Geophys Res Lett. doi:10.1029/2011GL050232

    Google Scholar 

  • Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, Gombos D (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Amer Meteor Soc 92:157–174

    Google Scholar 

  • Aumann HH et al (2003) AIRS/AMSU/HSB on the Aqua mission: design, science, objectives, data products and processing systems. IEEE Trans Geosci Remote Sens 41:253–264

    Article  Google Scholar 

  • Bhattacharya SK et al (2009) Trace gases and CO isotope records from Cabo de Rama, India. Curr Sci 97:1336–1344

    Google Scholar 

  • Chahine MT, Barnet C, Olsen ET, Chen L, Maddy E (2005) On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys Res Lett 32:L22803. doi:10.1029/2005GL024165

    Article  Google Scholar 

  • Chahine MT, Chen L, Dimotakis P, Jiang X, Li Q, Olsen ET, Pagano T, Randerson J, Yung YL (2008) Satellite remote sounding of mid-tropospheric CO2. Geophys Res Lett 35:L17807. doi:10.1029/2008GL035022

    Article  Google Scholar 

  • Chevallier F, Maksyutov S, Bousquet P, Breon FM, Saito R, Yoshida Y, Yokota T (2009) On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations. Geophys Res Lett 36:L19807

    Article  Google Scholar 

  • Denning SA, Randall DA, Collatz GJ, Sellers PJ (1996) Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model, part 2: simulated CO2 concentrations. Tellus 48B:543–567

    Article  CAS  Google Scholar 

  • Denning SA, Takahashi T, Friedlingstein P (1999) Can a strong atmospheric CO2 rectifier effect be reconciled with a reasonable carbon budget. Tellus 51B:249–253

    Article  CAS  Google Scholar 

  • Francis PA, Gadgil S (2010) Towards understanding the unusual Indian monsoon in 2009. J Earth Syst Sci 119:397–415

    Google Scholar 

  • Goswami BN (2005) South Asian monsoon: in intraseasonal variability of the atmosphere–ocean climate system. In: William K, Lau M, Duane E (eds) Waliser, vol 2. Praxis, Springer, Berlin, pp 19-–61

    Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Pak B (2004) TransCom 3 L2 modelers. Transcom 3 inversion intercomparison: control results for the estimation of seasonal carbon sources and sinks. Glob Biogeochem Cycles 18:GB1010. doi:10.1029/2003GB002111

    Article  Google Scholar 

  • Heimann M, Körner S (2003) The global atmospheric tracer model TM3. Model description and user’s manual release 3.8a, Max-Planck Institute for Biogeochemistry Jena, Germany

  • Howden SD, Murtugudde R (2001) Effects of river inputs into the Bay of Bengal. J Geophys Res 106(C9)):19,825–19,844

    Article  Google Scholar 

  • IPCC, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: The physical science basis, Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge (UK), New York (USA), 996 pp

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Met Soc 77:437–471

    Article  Google Scholar 

  • Krishnamurti TN, Ardanuy P (1980) The 10 to 20 day westward propagating mode and breaks in the monsoon. Tellus 32:15–26

    Article  Google Scholar 

  • Krishnamurti TN, Subrahmanyam D (1982) The 30–50 Day Mode at 850 mb during MONEX. J Atmos Sci,1 39:2088–2095

    Article  Google Scholar 

  • Lau KM, Peng L (1987) Origin of the low frequency (intraseasonal) oscillation in the tropical atmosphere. Part1: basic theory. J Atmos Sci 44:950–972

    Article  Google Scholar 

  • Li KF, Tian B, Waliser DE, Yuk Yung L (2010) Tropical midtropospheric CO2 variability driven by the Madden–Julian Oscillation. Proc Natl Acad Sci U S A 107:19,171–19,175. doi:10.1073/pnas.1008222107

    Article  CAS  Google Scholar 

  • Murakami T, Nakazawa TJ, He J (1984) On the 40–50 day oscillation during 1979 Northern Hemisphere summer. Part I: phase propagation. J Meteorol Soc Jpn 62:440–468

    Google Scholar 

  • Murtugudde RG, Busalacchi AJ (1999) Interannual variability of the dynamics and thermodynamics of the Indian Ocean. J Climate 12:2300–2326

    Article  Google Scholar 

  • Niwa Y, Machida T, Sawa Y, Matsueda H, Schuck TJ, Brenninkmeijer CAM, Imasu R, Satoh M (2012) Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements. J Geophys Res 117:D11303. doi:10.1029/2012JD017474

    Article  Google Scholar 

  • Peters W, Jacobson AR, Sweeney C, Arlyn EA, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Petron G, Hirsch AI, Douglas EJ, van der Werf WR, Wennberg I, Tans PP (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. P Natl Acad Sci USA 104:18925–18930

    Article  CAS  Google Scholar 

  • Raupach MR (2011) Carbon cycle: Pinning down the land carbon sink. Nat Clim Chang 1:148–149

    Article  CAS  Google Scholar 

  • Reynolds RW, Smith TM (1995) A high-resolution global sea surface temperature climatology. J Climate 8:1571–1583

    Article  Google Scholar 

  • Rothe M, Jordan A, Brand WA (2005) Trace gases, δ13C and δ18O of CO2-in-air samples: Storage in glass flasks using PCTFE seals and other effects, Proceedings of the 12th IAEA/WMO meeting of CO2 experts, Toronto, Sept. 2003, WMO-GAW Report 161, ed. D. Worthy and L. Huang 64–70

  • Rödenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric tracer transport. Atmos Chem Phys 3:1919–1964

    Article  Google Scholar 

  • Sarma VVSS et al (2009) Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India. Estuarine Coastal Shelf Sci 85:515–524

    Article  CAS  Google Scholar 

  • Sarma VVSS, Krishna MS, Rao VD, Viswanadham R, Kumar NA, Kumari TR, Gawade L, Ghatkar, Tari A (2012) Sources and sinks of CO2 in the west coast of Bay of Bengal. Tellus B 64:10961. doi:10.3402/tellusb.v64io.10961

    Article  CAS  Google Scholar 

  • Shetye SR, Gouveia AD, Shankar D, Shenoi SSC, Vinayachandran PN, Sundar D, Michael GS, Nampoothiri G (1996) Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. J Geophys Res 101(C6):14,011–14,026

    Article  Google Scholar 

  • Sturm P, Leuenberger M, Sirignano C, Neubert REM, Meijer HAJ, Langenfelds R, Brand WA, Tohjima Y (2004) Permeation of atmospheric gases through polymer O-rings used in flasks for air sampling. J Geophys Res 109, D04309. doi:10.1029/2003jd004073

    Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Sabine C, Olafsson J, Arnarson T, Tilbrook SB, Johannessen T, Olsen A, Bellerby R, K¨ortzinger A, Steinhoff T, Hoppema M, de Baar HJW, Wong CS, Delille B, Bates NR (2009) Climatological mean and decadal changes in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res Pt II 56:554–577

    Article  CAS  Google Scholar 

  • Tiwari YK, RaviKumar K (2011) Glass flask air sample analysis through gas chromatography in India: implications for constraining CO2 surface fluxes, WMO/GAW Report No. 194, WMO/TD-No.1553, April 2011

  • Tiwari YK, Patra PK, Chevallier F, Francey RJ, Krummel PB, Allison CE et al (2011) CO2 observations at Cape Rama, India for the period of 1993–2002: implications for constraining Indian emissions. Curr Sci 101:1562–1568

    CAS  Google Scholar 

  • Valsala V (2008) The first and second baroclinic mode responses of tropical Indian Ocean to interannual equatorial wind anomalies. J Oceanography 64:479–494

    Google Scholar 

  • Valsala V, Maksyutov S (2010) Simulation and assimilation of global ocean pCO2 and air–sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model. Tellus-B 62:821–840. doi:10.1111/j.16000889.2010.00495

    Article  Google Scholar 

  • Valsala V, Tiwari YK, Prasanth P, Roxy M, Maksyutov S, Murtugudde R (2013) Intraseasonal variability of terrestrial biospheric CO2 fluxes over India during summer monsoons. JGR-Biogeosciences. doi:10.1002/jgrg.20037

    Google Scholar 

  • Webster PJ (1995) The annual cycle and the predictability of the tropical coupled ocean atmosphere system. Meteorol Atmos Phys 56:33–55

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. B. N. Goswami, Director, IITM, to provide an opportunity to participate in the cruise experiment. We also thank the chief scientist of the Sagar Kanya 261 for the full support during the cruise period. AIRS data is obtained from http://mirador.gsfc.nasa.gov/cgi-bin/mirador/collectionlist.pl?keyword=airx3c2d. CarbonTracker data is obtained from ftp://aftp.cmdl.noaa.gov/products/carbontracker/CO2molefractions/CO2_total/. We thank Dr. Christian Rodenbeck, MPI, Jena, Germany as well as DKRZ Hamburg for providing TM3 model computing facility. OLR data is used from NCEP reanalysis. RM gratefully acknowledges NASA PO MJO Bio-Feedback grant and the ONR DYNAMO funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh K. Tiwari.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, K.R., Tiwari, Y.K., Valsala, V. et al. On understanding the land–ocean CO2 contrast over the Bay of Bengal: A case study during 2009 summer monsoon. Environ Sci Pollut Res 21, 5066–5075 (2014). https://doi.org/10.1007/s11356-013-2386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2386-2

Keywords

Navigation