Skip to main content
Log in

Toward a robust analytical method for separating trace levels of nano-materials in natural waters: cloud point extraction of nano-copper(II) oxide

  • 14th EuCheMS International Conference on Chemistry and the Environment (ICCE 2013, Barcelona, June 25 - 28, 2013)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cloud point extraction (CPE) factors, namely Triton X-114 (TX-114) concentration, pH, ionic strength, incubation time, and temperature, were optimized for the separation of nano-sized copper(II) oxide (nCuO) in aqueous matrices. The kinetics of phase transfer was studied using UV–visible spectroscopy. From the highest separation rate, the most favorable conditions were observed with 0.2 % w/v of TX-114, pH = 9.0, ionic strength of 10 mM NaCl, and incubation at 40 °C for 60 min, yielding an extraction efficiency of 89.2 ± 3.9 % and a preconcentration factor of 86. The aggregate size distribution confirmed the formation of very large nCuO–micelle assemblies (11.9 μm) under these conditions. The surface charge of nCuO was also diminished effectively. An extraction efficiency of 91 % was achieved with a mixture of TX-100 and TX-114 containing 30 wt.% of TX-100. Natural organic and particulate matters, represented by humic acid (30 mg/L) and micron-sized silica particles (50 mg/L), respectively, did not significantly reduce the CPE efficiency (<10 %). The recovery of copper(II) ions (20 mg/L) in the presence of humic acid was low (3–10 %). The spiked natural water samples were analyzed either directly or after CPE by inductively coupled plasma mass spectrometry following acid digestion/microwave irradiation. The results indicated the influence of matrix effects and their reduction by CPE. A delay between spiking nCuO and CPE may also influence the recovery of nCuO due to aggregation and dissolution. A detection limit of 0.04 μg Cu/L was achieved for nCuO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams LK, Lyon DY, McIntosh A, Alvarez PJJ (2006) Comparative eco-toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  Google Scholar 

  • Al-Degs YS, El-Barghouthi MI, Issa AA, Khraisheh MA, Walker GM (2006) Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res 40:2645–2658

    Article  CAS  Google Scholar 

  • Alvarez-Puebla RA, Garrido JJ (2005) Effect of pH on the aggregation of a gray humic acid in colloidal and solid states. Chemosphere 59:659–667

    Article  CAS  Google Scholar 

  • ASTM D2024-65 (2003) Standard test method for cloud point of nonionic surfactants. American Society for Testing and Materials (ASTM) International, West Conshohocken, PA

  • Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    Article  CAS  Google Scholar 

  • Bloor JR, Morrison JC, Rhodes CT (1970) Effect of pH on the micellar properties of a nonionic surfactant. J Pharm Sci 59:387–391

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro. Arch Toxicol 87:1181–1200

    Article  CAS  Google Scholar 

  • Buffet P-E, Tankoua OF, Pan J-F et al (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84:166–174

  • Buffet P-E, Richard M, Caupos F et al (2013) A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). Environ Sci Technol 47:1620–1628

    Google Scholar 

  • Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  CAS  Google Scholar 

  • Chao J-B, Liu J-F, Yu S-J et al (2011) Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal Chem 83:6875–6882

    Article  CAS  Google Scholar 

  • Cronholm P, Karlsson HL, Hedberg J et al (2012) Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9:970–982

    Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 46:1216–1222

    Google Scholar 

  • El-Ghazawy RA (2005) Surface and thermodynamic properties for some novel polyoxyalkylenated trimethylolpropane monoester surfactants. Colloids Surf A 260:1–6

    Article  CAS  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1998) Particle deposition & aggregation: measurement, modeling, and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Eshel G, Levy J, Mingelgrin U, Singer MJ (2004) Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci Soc Am J 68:736–743

    Article  CAS  Google Scholar 

  • Evans EH, Giglio JJ (1993) Interferences in inductively coupled plasma mass spectrometry. A review. J Anal At Spectrom 8:1–18

    Article  CAS  Google Scholar 

  • Gottschalk F, Kost E, Nowack B (2013a) Engineered nanomaterials in waters and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–1287

    Article  CAS  Google Scholar 

  • Gottschalk F, Sun TY, Nowack B (2013b) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  CAS  Google Scholar 

  • Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225

    Article  CAS  Google Scholar 

  • Hartmann G, Schuster M (2013) Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Anal Chim Acta 761:27–33

    Article  CAS  Google Scholar 

  • Hinze WL, Pramauro E (1993) A critical review of surfactant-mediated phase separations (cloud point extractions): theory and applications. Crit Rev Anal Chem 24:133–177

    Article  CAS  Google Scholar 

  • Jeong S-W, Kim S-D (2009) Aggregation and transport of copper oxide nanoparticles in porous media. J Environ Monit 11:1595–1600

    Article  CAS  Google Scholar 

  • Käkinen A, Bondarenko O, Ivask A, Kahru A (2011) The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors 11:10502–10521

    Article  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles: a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  CAS  Google Scholar 

  • Keck CM, Müller RH (2008) Size analysis of submicron particles by laser diffractometry—90 % of the published measurements are false. Int J Pharm 355:150–163

    Google Scholar 

  • Liu J-F, Chao J-B, Liu R et al (2009a) Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal Chem 81:6496–6502

    Article  CAS  Google Scholar 

  • Liu J-F, Liu R, Yin Y-G, Jiang G-B (2009b) Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase. Chem Commun 12:1514–1516

    Article  Google Scholar 

  • Liu J-F, Sun J, Jiang G-B (2010) Use of cloud point extraction for removal of nanosized copper oxide from wastewater. Chin Sci Bull 55:346–349

    Article  CAS  Google Scholar 

  • Logan EM, Pulford ID, Cook GT, Mackenzie AB (1997) Complexation of Cu2+ and Pb2+ by peat and humic acid. Eur J Soil Sci 48:685–696

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  CAS  Google Scholar 

  • Majedi SM, Lee HK, Kelly BC (2012) Chemometric analytical approach for the cloud point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide nanoparticles in water samples. Anal Chem 84:6546–6552

    Article  CAS  Google Scholar 

  • Majedi SM, Kelly BC, Lee HK (2013) Efficient hydrophobization and solvent microextraction for determination of trace nano-sized silver and titanium dioxide in natural waters. Anal Chim Acta 789:47–57

    Article  CAS  Google Scholar 

  • Manusadžianas L, Caillet C, Fachetti L et al (2012) Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ Toxicol Chem 31:108–114

    Article  Google Scholar 

  • Mie G (1908) Beiträge zur optik trüber medien, Speziell kolloidaler metallösungen. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  • Misra SK, Dybowska A, Berhanu D et al (2012) Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. Environ Sci Technol 46:1216–1222

    Article  CAS  Google Scholar 

  • Miyagishi S, Okada K, Asakawa T (2001) Salt effect on critical micelle concentrations of nonionic surfactants, N-acyl-N-methylglucamides (MEGA-n). J Colloid Interface Sci 238:91–95

    Article  CAS  Google Scholar 

  • Mudunkotuwa IA, Pettibone JM, Grassian VH (2012) Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol 46:7001–7010

    Article  CAS  Google Scholar 

  • Mukherjee P, Padhan SK, Dash S, Patel S, Mishra BK (2011) Clouding behaviour in surfactant systems. Adv Colloid Interface Sci 162:59–79

    Article  CAS  Google Scholar 

  • Nazar MF, Shah SS, Eastoe J, Khan AM, Shah A (2011) Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures. J Colloid Interface Sci 363:490–496

    Article  CAS  Google Scholar 

  • Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterials release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    Article  CAS  Google Scholar 

  • Polyanskiy M (2012) Refractive index database. Available at: http://refractiveindex.info/?group=822CRYSTALS&material=CuO. Accessed 19 June 2013

  • Pytlakowska K, Kozik V, Dabioch M (2013) Complex-forming organic ligands in cloud-point extraction of metal ions: a review. Talanta 110:202–208

    Article  CAS  Google Scholar 

  • Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168

    Article  CAS  Google Scholar 

  • Ribbing CG, Roos A (1998) Copper oxide (Cu2O, CuO). In: Palik ED (ed) Handbook of optical constants of solids, vol II, 3rd edn. Academic, New York, pp 875–882

    Chapter  Google Scholar 

  • Som C, Nowack B, Krug HF, Wick P (2013) Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials. Acc Chem Res 46:863–872

    Article  CAS  Google Scholar 

  • Stone V, Nowack B, Baun A, van den Brink N et al (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  CAS  Google Scholar 

  • Teo WZ, Ambrosi A, Pumera M (2013) Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem Commun 28:51–53

    Article  CAS  Google Scholar 

  • Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  Google Scholar 

  • Ulusoy HI, Gürkan R, Yilmaz O, Akçay M (2012) Development of a cloud point extraction and preconcentration method for chromium(III) and total chromium prior to flame atomic absorption spectrometry. J Anal Chem 67:131–139

    Article  CAS  Google Scholar 

  • Ulusoy HI, Aksoy U, Akçay M (2013) Simultaneous pre-concentration of Pb and Sn in food samples and determination by atomic absorption spectrometry. Eur Food Res Technol 236:725–733

    Article  CAS  Google Scholar 

  • US EPA Method 3052 (1996) Microwave assisted acid digestion of siliceous and organically based matrices. In: Test methods for evaluating solid waste, physical/chemical methods SW-846. US Government Printing Office, Washington, DC

    Google Scholar 

  • Vogelgesang J, Hädrich J (1998) Limits of detection, identification, and determination: a statistical approach for practitioners. Accred Qual Assur 3:242–255

    Article  CAS  Google Scholar 

  • von der Kammer F, Ferguson PL, Holden PA et al (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49

    Article  Google Scholar 

  • Vranic S, Garcia-Verdugo I, Darnis C et al (2013) Internalization of SiO2 nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurf®. Environ Sci Pollut Res 20:2761–2770

    Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    Google Scholar 

  • Watanabe H, Tanaka H (1978) A non-ionic surfactant as a new solvent for liquid–liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphtol. Talanta 25:585–589

    Article  CAS  Google Scholar 

  • Westerhoff P, Nowack B (2013) Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc Chem Res 46:844–853

    Article  CAS  Google Scholar 

  • Wigginton NS, Haus KL, Hochella MF (2007) Aquatic environmental nanoparticles. J Environ Monitor 9:1306–1316

    Article  CAS  Google Scholar 

  • Yu S-J, Chao J-B, Sun J, Yin Y-G, Liu J-F, Jiang G-B (2013) Quantification of the uptake of silver nanoparticles and ions to HepG2 cells. Environ Sci Technol 47:3268–3274

    Google Scholar 

  • Zhao J, Wang Z, Dai Y, Xing B (2013) Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Res 47:4169–4178

    Article  CAS  Google Scholar 

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A 43:278–284

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Environment Agency, Ministry of the Environment and Water Resources of Singapore, and the National University of Singapore. S.M.M. gratefully acknowledges the Agency for Science, Technology and Research, Singapore, for awarding a research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hian Kee Lee.

Additional information

Responsible editor: Vera Slaveykova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majedi, S.M., Kelly, B.C. & Lee, H.K. Toward a robust analytical method for separating trace levels of nano-materials in natural waters: cloud point extraction of nano-copper(II) oxide. Environ Sci Pollut Res 21, 11811–11822 (2014). https://doi.org/10.1007/s11356-013-2381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2381-7

Keywords

Navigation