Environmental Science and Pollution Research

, Volume 21, Issue 23, pp 13160–13168 | Cite as

Source apportion of atmospheric particulate matter: a joint Eulerian/Lagrangian approach

  • A. Riccio
  • E. Chianese
  • G. Agrillo
  • C. Esposito
  • L. Ferrara
  • G. Tirimberio
Chemistry in a sustainable society

Abstract

PM2.5 samples were collected during an annual monitoring campaign (January 2012–January 2013) in the urban area of Naples, one of the major cities in Southern Italy. Samples were collected by means of a standard gravimetric sampler (Tecora Echo model) and characterized from a chemical point of view by ion chromatography. As a result, 143 samples together with their ionic composition have been collected. We extend traditional source apportionment techniques, usually based on multivariate factor analysis, interpreting the chemical analysis results within a Lagrangian framework. The Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model was used, providing linkages to the source regions in the upwind areas. Results were analyzed in order to quantify the relative weight of different source types/areas. Model results suggested that PM concentrations are strongly affected not only by local emissions but also by transboundary emissions, especially from the Eastern and Northern European countries and African Saharan dust episodes.

Keywords

Particulate matter PM2.5 Source–receptor HYSPLIT Chemical composition Inverse analysis 

References

  1. Alessandrini E, Stafoggia M, Faustini A, Gobbi G, Forastiere F (2013) Saharan dust and the association between particulate matter and daily hospitalisations in Rome, Italy. Occup Environ Med 70:432–434. doi:10.1136/oemed-2012-101182 CrossRefGoogle Scholar
  2. Amodio M, Andriani E, de Gennaro G, Loiotile A, Di Gilio A, Placentino M (2012) An integrated approach to identify the origin of PM10 exceedances. Environ Sci Pollut Res 19(8):3132–3141CrossRefGoogle Scholar
  3. Ara Begum B, Kim E, Jeong CH, Lee DW, Hopke PK (2005) Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos Environ 39(20):3719–3724CrossRefGoogle Scholar
  4. Ashbaugh L (1983) A statistical trajectory technique for determining air pollution source regions. J Air Pollut Control Assoc 33(11):1096–1098CrossRefGoogle Scholar
  5. Ashbaugh L, Malm W, Sadeh W (1985) A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos Environ 19(8):1263–1270CrossRefGoogle Scholar
  6. Barkan J, Alpert P, Kutiel H, Kishcha P (2005) Synoptics of dust transportation days from Africa toward Italy and central Europe. J Geophys Res Atmos (1984–2012) 110(D7)Google Scholar
  7. Barone G, D’Ambra P, di Serafino D, Giunta G, Murli A, Riccio A (2000) Application of a parallel photochemical air quality model to the Campania region (southern Italy). Environ Model Softw 15(6):503–511CrossRefGoogle Scholar
  8. Belis C, Karagulian F, Larsen B, Hopke P (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108. doi:10.1016/j.atmosenv.2012.11.009 CrossRefGoogle Scholar
  9. Collaud Coen M, Weingartner E, Schaub D, Hueglin C, Corrigan C, Henning S, Schwikowski M, Baltensperger U (2004) Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmos Chem Phys 4(11/12):2465–2480CrossRefGoogle Scholar
  10. Cristofanelli P, Marinoni A, Arduini J, Bonafè U, Calzolari F, Colombo T, Decesari S, Duchi R, Facchini M, Fierli F, et al (2009) Significant variations of trace gas composition and aerosol properties at Mt. Cimone during air mass transport from North Africa—contributions from wildfire emissions and mineral dust. Atmos Chem Phys 9(14):4603–4619CrossRefGoogle Scholar
  11. Di Sarra A, Di Iorio T, Cacciani M, Fiocco G, Fua D (2001) Saharan dust profiles measured by lidar at Lampedusa. J Geophys Res 106(D10):10,335–10CrossRefGoogle Scholar
  12. Diaz J, Tobias A, Linares C (2012) Saharan dust and association between particulate matter and case-specific mortality: a case-crossover analysis in Madrid (Spain). Environ Health 11(1):11CrossRefGoogle Scholar
  13. Draxler R, Hess G (1997) Description of the HYSPLIT_4 modeling system. NOAA tech. memo. ERL ARL-224. NOAA Air Resources Laboratory, Silver Spring, MDGoogle Scholar
  14. EEA, EMEP (2013) EEA air pollutant emission inventory guidebook 2013. European Environment Agency, CopenhagenGoogle Scholar
  15. Erel Y, Kalderon-Asael B, Dayan U, Sandler A (2007) European atmospheric pollution imported by cooler air masses to the Eastern Mediterranean during the summer. Environ Sci Technol 41(15):5198–5203CrossRefGoogle Scholar
  16. Escudero M, Stein A, Draxler R, Querol X, Alastuey A, Castillo S, Avila A (2006) Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model. J Geophys Res Atmos (1984–2012) 111(D6)Google Scholar
  17. EU (2011) Establishing guidelines for demonstration and subtraction of exceedances attributable to natural sources under the Directive 2008/50/EC on ambient air quality and cleaner air for EuropeGoogle Scholar
  18. Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50(3):1–36Google Scholar
  19. Gobbi G, Barnaba F, Ammannato L (2007) Estimating the impact of Saharan dust on the year 2001 PM10 record of Rome, Italy. Atmos Environ 41(2):261–275CrossRefGoogle Scholar
  20. Gobbi G, Angelini F, Barnaba F, Costabile F, Baldasano J, Basart S, Sozzi R, Bolignano A (2013) Changes in particulate matter physical properties during Saharan advections over Rome (Italy): a four-year study, 2001–2004. Atmos Chem Phys Discuss 13(2):4963–4988. doi:10.5194/acpd-13-4963-2013, http://www.atmos-chem-phys-discuss.net/13/4963/2013/ CrossRefGoogle Scholar
  21. Guerzoni S, Molinaroli E, Chester R (1997) Saharan dust inputs to the western mediterranean sea: depositional patterns, geochemistry and sedimentological implications. Deep Sea Res Part II Top Stud Oceanogr 44(3):631–654CrossRefGoogle Scholar
  22. Hopke P (2003) Recent developments in receptor modeling. J Chemometr 17(5):255–265CrossRefGoogle Scholar
  23. Hsu YK, Holsen TM, Hopke PK (2003) Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos Environ 37(4):545–562CrossRefGoogle Scholar
  24. Hwang I, Hopke PK (2007) Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site. Atmos Environ 41(3):506–518CrossRefGoogle Scholar
  25. IPCC (2007) Climate Change 200: The Scientific Basis. Cambridge University Press, New YorkGoogle Scholar
  26. ISPRA (2013) Annuario dei dati ambientali (in Italian). Istituto Superiore per la Ricerca e la Protezione Ambientale. http://annuario.apat.it/
  27. Kallos G, Astitha M, Katsafados P, Spyrou C (2007) Long-range transport of anthropogenically and naturally produced particulate matter in the Mediterranean and North Atlantic: Current state of knowledge. J Appl Meteorol Climatol 46(8):1230–1251CrossRefGoogle Scholar
  28. Künzli N, Perez L (2009) Evidence based public health—the example of air pollution. Swiss Med Wkly 139(17-18):242–250Google Scholar
  29. Lelieveld J, Berresheim H, Borrmann S, Crutzen P, Dentener F, Fischer H, Feichter J, Flatau P, Heland J, Holzinger R, et al (2002) Global air pollution crossroads over the Mediterranean. Sci 298(5594):794–799CrossRefGoogle Scholar
  30. Mallone S, Stafoggia M, Faustini A, Gobbi G, Marconi A, Forastiere F (2011) Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. Environ Health Perspect 119(10):1409–1414. doi:10.12989/ehp.1003026 CrossRefGoogle Scholar
  31. Malm WC, Gebhart KA, Henry RC (1990) An investigation of the dominant source regions of fine sulfur in the western United States and their areas of influence. Atmos Environ Part A Gen Top 24(12):3047–3060CrossRefGoogle Scholar
  32. Marenco F, Bonasoni P, Calzolari F, Ceriani M, Chiari M, Cristofanelli P, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Valli G, Vecchi R (2006) Characterization of atmospheric aerosols at Monte Cimone, Italy, during summer 2004: source apportionment and transport mechanisms. J Geophys Res Atmos 111(D24). doi:10.1029/2006JD007145
  33. Mihalopoulos N, Stephanou E, Kanakidou M, Pilitsidis S, Bousquet P (1997) Tropospheric aerosol ionic composition in the Eastern Mediterranean region. Tellus B 49(3):314–326CrossRefGoogle Scholar
  34. Molinaroli E, Guerzoni S, Rampazzo G (1993) Contribution of saharan dust to the central mediterranean basin. Geol Soc Am Spec Pap 284:303–312Google Scholar
  35. Nava S, Prati P, Lucarelli F, Mandò PA, Zucchiatti A (2002) Source apportionment in the town of La Spezia (Italy) by continuous aerosol sampling and PIXE analysis. Water Air Soil Pollut Focus 2:247–260CrossRefGoogle Scholar
  36. Ostro B, Tobias A, Querol X, Alastuey A, Amato F, Pey J, Pérez N, Sunyer J (2011) The effects of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain. Environ Health Perspect 119(12):1781CrossRefGoogle Scholar
  37. Papayannis A, Balis D, Amiridis V, Chourdakis G, Tsaknakis G, Zerefos C, Castanho A, Nickovic S, Kazadzis S, Grabowski J, et al (2005) Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project. Atmos Chem Phys 5(8):2065–2079CrossRefGoogle Scholar
  38. Perez L, Tobías A, Querol X, Pey J, Andrés A, Díaz, Sunyer J (2012) Saharan dust, particulate matter and cause-specific mortality: a case-crossover study in barcelona (spain). Environ Int 48(1):150–155CrossRefGoogle Scholar
  39. Perrone MR, Turnone A, Buccolieri A, Buccolieri G (2006) Particulate matter characterization at a coastal site in south-eastern Italy. J Environ Monit 8(1):183–190CrossRefGoogle Scholar
  40. Poirot RL, Wishinski PR, Hopke PK, Polissar AV (2001) Comparative application of multiple receptor methods to identify aerosol sources in northern Vermont. Environ Sci Technol 35(23):4622–4636CrossRefGoogle Scholar
  41. Pope C, Dockery D (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56(6):709–742CrossRefGoogle Scholar
  42. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44(46):7520–7540CrossRefGoogle Scholar
  43. Querol X, Alastuey A, Ruiz C, Artinano B, Hansson H, Harrison R, Buringh Et, Ten Brink H, Lutz M, Bruckmann P, et al (2004) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ 38(38):6547–6555CrossRefGoogle Scholar
  44. Querol X, Pey J, Pandolfi M, Alastuey A, Cusack M, Pérez N, Moreno T, Viana M, Mihalopoulos N, Kallos G, et al (2009) African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmos Environ 43(28):4266–4277CrossRefGoogle Scholar
  45. Reff A, Eberly S, Bhave P (2007) Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. J Air Waste Manag Assoc 57(2):146–154CrossRefGoogle Scholar
  46. Riccio A, Barone G, Chianese E, Giunta G (2006) A hierarchical Bayesian approach to the spatio-temporal modeling of air quality data. Atmos Environ 40(3):554–566CrossRefGoogle Scholar
  47. Riccio A, Giunta G, Chianese E (2007) The application of a trajectory classification procedure to interpret air pollution measurements in the urban area of Naples (Southern Italy). Sci Total Environ 376(1–3):198–214. doi:10.1016/j.scitotenv.2007.01.068 CrossRefGoogle Scholar
  48. Rodean H (1996) Stochastic Lagrangian models of turbulent diffusion. Meteorological monographs. American Meteorological Society, Washington, DCGoogle Scholar
  49. Schwartz J, Neas LM (2000) Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiol 11(1):6–10CrossRefGoogle Scholar
  50. Seibert P, Frank A (2004) Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos Chemi Phys 4(1):51–63CrossRefGoogle Scholar
  51. Squizzato S, Masiol M, Innocente E, Pecorari E, Rampazzo G, Pavoni B (2012) A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol. J Aerosol Sci 46:64–76CrossRefGoogle Scholar
  52. Stein A, Wang Y, de La Rosa J, Sanchez de La Campa A, Castell N, Draxler R (2011) Modeling PM10 originating from dust intrusions in the Southern Iberian Peninsula using HYSPLIT. Weather and Forecast 26(2):236–242CrossRefGoogle Scholar
  53. Stohl A (1996) Trajectory statistics-a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos Environ 30(4):579–587CrossRefGoogle Scholar
  54. Stohl A, Eckhardt S, Forster C, James P, Spichtinger N, Seibert P (2002) A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements. Atmos Environ 36(29):4635–4648CrossRefGoogle Scholar
  55. Thomson D, Wilson J (2013) History of Lagrangian stochastic models for turbulent dispersion. American Geophysical Union, Washington, DC, pp 19–36Google Scholar
  56. Tositti L, Riccio A, Sandrini S, Brattich E, Baldacci D, Parmeggiani S, Cristofanelli P, Bonasoni P (2013) Short-term climatology of PM10 at a high altitude background station in southern Europe. Atmos Environ 65:142–152. doi:10.1016/j.atmosenv.2012.10.051 CrossRefGoogle Scholar
  57. Uliasz M, Pielke R (1991) Application of the receptor oriented approach in mesoscale dispersion modeling. In: van Dop H, Steyn DG (eds) Air pollution modeling and its application VIII. Springer, New York, pp 399–407CrossRefGoogle Scholar
  58. Viana M, Kuhlbusch T, Querol X, Alastuey A, Harrison R, Hopke P, Winiwarter W, Vallius M, Szidat S, Prévôt A, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda A, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39(10):827–849CrossRefGoogle Scholar
  59. WHO (2006) Air quality guidelines: Global update 2005: particulate matter, ozone, nitrogen dioxide and sulfur dioxide. A EURO publication, WHO Regional Office for the Western Pacific, ManilaGoogle Scholar
  60. Wotawa G, Trainer M (2000) The influence of Canadian forest fires on pollutant concentrations in the United States. Science 288(5464):324–328CrossRefGoogle Scholar
  61. Zhou L, Hopke PK, Liu W (2004) Comparison of two trajectory based models for locating particle sources for two rural New York sites. Atmospheric Environment 38(13):1955–1963CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Riccio
    • 1
  • E. Chianese
    • 1
  • G. Agrillo
    • 1
  • C. Esposito
    • 1
  • L. Ferrara
    • 2
  • G. Tirimberio
    • 1
  1. 1.Department of Science and TechnologyUniversity of Naples ParthenopeNaplesItaly
  2. 2.Department of ChemistryUniversity of Naples Federico IINaplesItaly

Personalised recommendations