Skip to main content
Log in

Immobilised Phaeodactylum tricornutum as biomonitor of trace element availability in the water column during dredging

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work reports changes of Cr, Cu, Zn, Cd, Hg and Pb concentrations in the dissolved fraction, suspended particulate matter and immobilised Phaeodactylum tricornutum Bohlin (Bacillariophyceae), as well as of microalgae specific growth rates, during a 5-month period dredging operation in a contaminated area of the Tagus estuary, Portugal. Trace element concentrations showed broad variations in the dissolved fraction and suspended particulate matter, presumably reflecting rapid exchanges of redox-sensitive elements between water and particles, in conjunction with the dilution effect caused by the tidal excursion. Immobilised cells exposed to dredging environmental conditions showed significantly higher concentrations of Cr, Cu, Zn, Cd, Hg and Pb than under no dredging conditions. Concomitantly, specific cell growth was significantly lower, suggesting that elements released with dredging affect the microalgae physiology. The results obtained in this in situ work imply that the dissolved fraction and the suspended particulate matter are relatively ineffective indicators of the trace element enhancement during dredging and pointed out immobilised P. tricornutum as a reliable and efficient biomonitoring tool for the assessment of trace element remobilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson DM, Morel FMM (1978) Copper sensitivity of Gonyaulax tamarensis. Limnol Oceanogr 23:283–295

    Article  CAS  Google Scholar 

  • Bozeman J, Koopman B, Bitton G (1989) Toxicity testing using immobilized algae. Aquat Toxicol 14:345–352

    Article  CAS  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol 96:225–250

    Article  CAS  Google Scholar 

  • Cabrita MT, Raimundo J, Pereira P, Vale C (2013) Optimizing alginate beads for the immobilisation of Phaeodactylum tricornutum in estuarine waters. Mar Environ Res 87–88:37–43

    Article  Google Scholar 

  • Caçador I, Vale C, Catarino F (1996) Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus Estuary salt marshes, Portugal. Estuar Coast Shelf Sci 42(3):393–403

    Article  Google Scholar 

  • Caetano M, Madureira MJ, Vale C (2003) Metal remobilisation during resuspension of anoxic contaminated sediment: short-term laboratory study. Water Air Soil Pollut 143:23–40

    Article  CAS  Google Scholar 

  • Caetano M, Fonseca N, Cesário R, Vale C (2007) Mobility of Pb in salt marshes recorded by total content and stable isotopic signature. Sci Total Environ 380(1–3):84–92

    Article  CAS  Google Scholar 

  • Canário J, Vale C, Caetano M (2005) Distribution of monomethyl mercury and mercury in surface sediments of the Tagus Estuary (Portugal). Mar Pollut Bull 50:1142–1145

    Article  Google Scholar 

  • Cotté-Krieff M-H, Guieu C, Thomas AJ, Martin J-M (2000) Sources of Cd, Cu, Ni and Zn in Portuguese coastal waters. Mar Chem 71:199–214

    Article  Google Scholar 

  • Cundy AB, Croudace IW, Cearreta A, Irabien MJ (2003) Reconstructing historical trends in metal input in heavily-disturbed, contaminated estuaries: studies from Bilbao, Southampton Water and Sicily. Appl Geochem 18:311–325

    Article  CAS  Google Scholar 

  • de Bettencourt AMM (1988) On arsenic speciation in the Tagus Estuary. Neth J Sea Res 22(3):205–212

    Article  Google Scholar 

  • De Filippis LF (1979) The effect of heavy metal compounds on the permeability of Chlorella cells. Z Pflanzenphysiol 92:39–49

    Article  Google Scholar 

  • Dortch Q, Whitledge TE (1992) Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont Shelf Res 12:1293–1309

    Article  Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980

    Article  CAS  Google Scholar 

  • EPA (2002) Method 1631, Revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. EPA-821-R-02-019. US Environmental Protection Agency, Office of Water

  • Fisher NS, Bohé M, Teyssié J-L (1984) Accumulation and toxicity of Cd, Zn, Ag, and Hg in four marine phytoplankters. Mar Ecol Prog Ser 18:201–213

    Article  CAS  Google Scholar 

  • Förstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. Springer, Berlin

    Book  Google Scholar 

  • González-Dávila M (1995) The role of phytoplankton cells on the control of heavy metal concentration in seawater. Mar Chem 48(3–4):215–236

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling M (1983) Methods of seawater analysis. Chemie, Weinheimer

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms, I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol 8(2):229–239

    Article  CAS  Google Scholar 

  • Hampel M, Canário J, Branco V, Vale C, Blasco J (2009) Environmental levels of linear alkylbenzene sulfonates (LAS) in sediments from the Tagus estuary (Portugal): environmental implications. Environ Monit Assess 149:151–161

    Article  CAS  Google Scholar 

  • Hertzberg S, Jensen A (1989) Studies of alginate-immobilized marine microalgae. Bot Mar 32(4):267–273

    Article  CAS  Google Scholar 

  • Horvatić J, Peršić V (2007) The effect of Ni2+, Co2+, Zn2+, Cd2+ and Hg2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test. B Environ Contam Toxicol 79:494–498

    Article  Google Scholar 

  • Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107

    Article  Google Scholar 

  • Kenny AJ, Rees HL (1994) The effects of marine gravel extraction on the macrobenthos early post-dredging recolonization. Mar Pollut Bull 28:442–447

    Article  Google Scholar 

  • Küpper H, Setlik I, Spiller M, Küpper FC, Prasil O (2002) Heavy-metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38:429–441

    Article  Google Scholar 

  • Luoma SN, Bryan GW, Langston WJ (1982) Scavenging of heavy metals from particulates by brown seaweeds. Mar Pollut Bull 13:394–396

    Article  CAS  Google Scholar 

  • Maciorowski AF, Little LW, Sims RC, Sims JL (1983) Bioassays: procedures and results. J Water Pollut Con F 55(6):801–816

    CAS  Google Scholar 

  • Marques CR, Pereira R, Antunes SC, Cachada A, Duarte AC, Gonçalves F (2011) In situ aquatic bioassessment of pesticides applied on rice fields using a microalga and daphnids. Sci Total Environ 409(18):3375–3385

    Article  CAS  Google Scholar 

  • Meeravali NN, Kumar SJ (2000) Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry. Fresenius J Anal Chem 366(3):313–315

    Article  CAS  Google Scholar 

  • Moreira dos Santos M, Moreno-Garrido I, Gonçalves F, Soares AMVM, Ribeiro R (2002) An in situ bioassay for estuarine environments using the microalga Phaeodactylum tricornutum. Environ Toxicol Chem 21(3):567–574

    Article  Google Scholar 

  • Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R (2006) Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: bead stability and suitability. Enzym Microbiol Technol 38(1–2):135–141

    Article  CAS  Google Scholar 

  • Nayar S, Goh BPL, Chou LM (2004) Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicol Environ Saf 59:349–369

    Article  CAS  Google Scholar 

  • Newell RC, Seiderer LJ, Hitchcock DR (1998) The impact of dredging works in coastal waters: a review of the sensitivity to disturbance and subsequent recovery of biological resources on the seabed. Oceanogr Mar Biol Annu Rev 36:127–178

    Google Scholar 

  • Nogueira JFM, Simplício B, Florêncio MH, Bettencourt AMM (2003) Levels of tributyltin in sediments from the Tagus estuary. Nature Reserve Estuaries 26(3):798–802

    Article  CAS  Google Scholar 

  • Nriagu JO (1990) Global metal pollution—poisoning the biosphere? Environment 32:7–33

    Article  Google Scholar 

  • Nyholm N, Källqvist T (1989) Methods for growth inhibition toxicity tests with freshwater algae. Environ Toxicol Chem 8(8):689–703

    Article  CAS  Google Scholar 

  • Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421–422:3–16

    Article  Google Scholar 

  • Polkowska-Motrenko H, Danko B, Dybczyński R, Koster-Ammerlaan A, Bode P (2000) Effect of acid digestion method on cobalt determination in plant materials. Anal Chim Acta 408(1–2):89–95

    Article  CAS  Google Scholar 

  • Rainbow PS (2006) Biomonitoring of trace metals in estuarine and marine environments. Australas J Ecotoxicol 12:107–122

    CAS  Google Scholar 

  • Ricard M (1987) Atlas du Phytoplancton Marin, Diatomophycees, volume 2. Centre National de la Recherche Scientifique, Paris, France

    Google Scholar 

  • Shaw AJ (1990) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, FL

    Google Scholar 

  • Sicko-Goad LM, Schelske CL, Stoermer EF (1984) Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnol Oceanogr 29(6):1170–1178

    Article  Google Scholar 

  • Sunda WG, Huntsman SA (1998) Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci Total Environ 219(2–3):165–181

    Article  CAS  Google Scholar 

  • Thomas WH, Hollibaugh JT, Seibert DLR, Wallace GT Jr (1980) Toxicity of a mixture of ten metals to phytoplankton. Mar Ecol Prog Ser 2:213–220

    Article  CAS  Google Scholar 

  • Twist H, Edwards AC, Codd GA (1997) A novel in situ biomonitor using alginate immobilised algae (Scenedesmus subspicatus) for the assessment of eutrophication in flowing surface waters. War Res 31(8):2066–2072

    Article  CAS  Google Scholar 

  • Uncles RJ, Stephens JA, Law DJ (2006) Turbidity maximum in the macrotidal, highly turbid Humber Estuary, UK: flocs, fluid mud, stationary suspensions and tidal bores. Estuar Coast Shelf Sci 67(1–2):30–52

    Article  Google Scholar 

  • Vale C (1990) Temporal variations of particulate metals in the Tagus River Estuary. Sci Total Environ 97(98):137–154

    Article  Google Scholar 

  • Vale C, Sundby B (1987) Suspended sediment fluctuations in the Tagus estuary on semi-diurnal and fortnightly time scales. Estuar Coast Shelf Sci 25(5):495–508

    Article  Google Scholar 

  • Vale C, Ferreira A, Micaelo C, Caetano M, Pereira E, Madureira MJ, Ramalhosa E (1998) Mobility of contaminants in relation to dredging operations in a mesotidal estuary (Tagus estuary, Portugal). Water Sci Technol 37:25–31

    Article  CAS  Google Scholar 

  • Vale C, Canário J, Caetano M, Lavrado J, Brito P (2008) Estimation of the anthropogenic fraction of elements in surface sediments of the Tagus Estuary (Portugal). Mar Pollut Bull 56(7):1364–1367

    Article  CAS  Google Scholar 

  • Windom HL, Schropp SJ, Calder FD, Ryan JD, Smith RG, Burney LC, Lewis FG, Rawlinson CH (1989) Natural trace metal concentrations in estuarine and coastal marine sediments of the south eastern United States. Environ Sci Technol 23(3):314–320

    Article  CAS  Google Scholar 

  • Zhang H, Davison W (1999) Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal Chim Acta 398:329–340

    Article  CAS  Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Maria Teresa Cabrita, Joana Raimundo and Patrícia Pereira acknowledge the grants by “Fundação para a Ciência e a Tecnologia” (FCT, grant nos SFRH/BPD/50348/2009, SFRH/BPD/91498/2012 and SFRH/BPD/69563/2010, respectively). Joana Raimundo also acknowledge grant within the Project “FP7-CoExist—Aquaculture and fisheries in the coastal zone”. We appreciate the collaboration of Rui Silva in the field work and assistance of Margarida Muro and Leonor Cavalinhos for microalgae culture maintenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Cabrita.

Additional information

Resposible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrita, M.T., Raimundo, J., Pereira, P. et al. Immobilised Phaeodactylum tricornutum as biomonitor of trace element availability in the water column during dredging. Environ Sci Pollut Res 21, 3572–3581 (2014). https://doi.org/10.1007/s11356-013-2362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2362-x

Keywords

Navigation