Skip to main content

Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils

Abstract

Coal mine spoils are usually unfavorable for plant growth and have different properties according to dumping years, weathering degree, and the occurrence of spontaneous combustion. The establishment of plant cover in mine spoils can be facilitated by arbuscular mycorrhizal fungi (AMF). A greenhouse pot experiment was conducted to evaluate the importance of AMF in plant adaptation to different mine spoils and the potential role of AMF for revegetation practices. We investigated the effects of Glomus aggregatum, Rhizophagus intraradices (syn. Glomus intraradices), and Funneliformis mosseae (syn. Glomus mosseae) on the growth, nutritional status, and metal uptake of maize (Zea mays L.) grown in recent discharged (S1), weathered (S2), and spontaneous combusted (S3) coal mine spoils. Symbiotic associations were successfully established between AMF and maize in three substrates. Mycorrhizal colonization effectively promoted plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K), adjusting C:N:P stoichiometry and alleviating toxic effects of heavy metals. G. aggregatum, R. intraradices, and F. mosseae exhibited different mycorrhizal effects in response to mine spoil types. F. mosseae was the most effective in the development of maize in S1 and may be the most appropriate for revegetation of this substrate, while R. intraradices played the most beneficial role in S2 and S3. Our results suggest that inoculation with AMF can enhance plant adaptation to different types of coal mine spoils and play a positive role in the revegetation of coal mine spoil banks.

This is a preview of subscription content, access via your institution.

References

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C (1974) Chemical analysis of ecological materials. Blackwell, London

    Google Scholar 

  • Baldrian P, Trögl J, Frouz J, Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Herinková J (2008) Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biol Biochem 40:2107–2115

    CAS  Article  Google Scholar 

  • Baslam M, Pascual I, Sánchez-Díaz M, Erro J, García-Mina JM, Goicoechea N (2011) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J Agric Food Chem 59:11129–11140

    CAS  Article  Google Scholar 

  • Bi YL, Li XL, Christie P, Hu ZQ, Wong MH (2003) Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere 50:863–869

    CAS  Article  Google Scholar 

  • Bian ZF, Dong JH, Lei SG, Leng HL, Mu SG, Wang H (2009) The impact of disposal and treatment of coal mining wastes on environment and farmland. Environ Geol 58:625–634

    CAS  Article  Google Scholar 

  • Cameron DD (2010) Arbuscular mycorrhizal fungi as (agro)ecosystem engineers. Plant Soil 333:1–5

    CAS  Article  Google Scholar 

  • Chaubey OP, Bohre P, Singhal PK (2012) Impact of bio-reclamation of coal mine spoil on nutritional and microbial characteristics—a case study. Int J Biol Sci Biol Technol 4:69–79

    Google Scholar 

  • Chen MM, Yin HB, O’Connor P, Wang YS, Zhu YG (2010) C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil 326:21–29

    CAS  Article  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802

    CAS  Article  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2012) Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environ Exp Bot 75:25–35

    CAS  Article  Google Scholar 

  • Cicatelli A, Todeschini V, Lingua G, Biondi S, Torrigiani P, Castiglione S (2013) Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants. Environ Sci Pollut Res. doi:10.1007/s11356-013-2072-4

    Google Scholar 

  • Ekka NJ, Behera N (2010) A study of the mycorrhizal association with vegetation on coal mines spoil. Bioscan 5:369–372

    Google Scholar 

  • Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N: P stoichiometry: toward a unified view of cellular and ecosystem processes. Bioscience 46:674–684

    Article  Google Scholar 

  • Enkhtuya B, Rydlová J, Vosátka M (2000) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Appl Soil Ecol 14:201–211

    Article  Google Scholar 

  • Enkhtuya B, Pöschl M, Vosátka M (2005) Native grass facilitates mycorrhizal colonisation and P uptake of tree seedlings in two anthropogenic substrates. Water Air Soil Pollut 166:217–236

    CAS  Article  Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gryndler M, Sudová R, Püschel D, Rydlová J, Janoušková M, Vosátka M (2008) Cultivation of high-biomass crops on coal mine spoil banks: can microbial inoculation compensate for high doses of organic matter? Bioresour Technol 99:6391–6399

    CAS  Article  Google Scholar 

  • Hallett PD, Feeney DS, Bengough AG, Rillig MC, Scrimgeour CM, Young IM (2009) Disentangling the impact of AM fungi versus root on soil structure and water transport. Plant Soil 314:183–196

    CAS  Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    CAS  Article  Google Scholar 

  • Janoušková M, Seddas P, Mrnka L, van Tuinen D, Dvořáčková A, Tollot M, Gianinazzi-Pearson V, Vosátka M, Gollotte A (2009) Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system. Mycorrhiza 19:393–402

    Article  Google Scholar 

  • Janoušková M, Rydlová J, Püschel D, Száková J, Vosátka M (2011) Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza 21:641–650

    Article  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    CAS  Article  Google Scholar 

  • Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollut 3:47–66

    CAS  Article  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour Technol 99:4732–4741

    CAS  Article  Google Scholar 

  • Juwarkar AA, Yadav SK, Thawale PR, Kumar P, Singh SK, Chakrabarti T (2009) Developmental strategies for sustainable ecosystem on mine spoil dumps: a case of study. Environ Monit Assess 157:471–481

    CAS  Article  Google Scholar 

  • Karthikeyan A, Krishnakumar N (2012) Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi. Ann For Res 55:207–216

    Google Scholar 

  • Kim K, Yim W, Trivedi P, Madhaiyan M, Boruah HPD, Islam MR, Lee G, Sa T (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429–440

    CAS  Article  Google Scholar 

  • Kjeldahl J (1883) A new method for the determination of nitrogen in organic matter. Fresenius’ Z Anal Chem 22:366–382

    Article  Google Scholar 

  • Koide R, Elliott G (1989) Cost, benefit and efficiency of the vesicular arbuscular mycorrhizal symbiosis. Funct Ecol 3:252–255

    Google Scholar 

  • Kumar A, Raghuwanshi R, Upadhyay RS (2010) Arbuscular mycorrhizal technology in reclamation and revegetation of coal mine spoils under various revegetation models. Engineering 2:683–689

    Article  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    CAS  Article  Google Scholar 

  • Li W, Chen LQ, Zhou TJ, Tang QB, Zhang T (2011) Impact of coal gangue on the level of main trace elements in the shallow groundwater of a mine reclamation area. Min Sci Technol 21:715–719

    CAS  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147

    CAS  Article  Google Scholar 

  • Malcová R, Albrechtová J, Vosátka M (2001) The role of the extraradical mycelium network of arbuscular mycorrhizal fungi on the establishment and growth of Calamagrostis epigejos in industrial waste substrates. Appl Soil Ecol 18:129–142

    Article  Google Scholar 

  • Matzek V, Vitousek PM (2009) N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol Lett 12:765–771

    Article  Google Scholar 

  • Mebius LJ (1960) A rapid method for the determination of organic carbon in soil. Anal Chim Acta 22:120–124

    CAS  Article  Google Scholar 

  • Mehrotra VS (1998) Arbuscular mycorrhizal associations of plants colonizing coal mine spoil in India. J Agr Sci Camb 130:125–133

    Article  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775

    CAS  Article  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939

  • Orłowska E, Ryszka P, Jurkiewicz A, Turnau K (2005) Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonisation of plants involved in phytostabilisation of zinc wastes. Geoderma 129:92–98

    Article  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    CAS  Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils 47:853–861

    CAS  Article  Google Scholar 

  • Püschel D, Rydlová J, Vosátka M (2007a) Mycorrhiza influences plant community structure in succession on spoil banks. Basic Appl Ecol 8:510–520

    Article  Google Scholar 

  • Püschel D, Rydlová J, Vosátka M (2007b) The development of arbuscular mycorrhiza in two simulated stages of spoil-bank succession. Appl Soil Ecol 35:363–369

    Article  Google Scholar 

  • Püschel D, Rydlová J, Sudová R, Gryndler M (2008a) Cultivation of flax in spoil-bank clay: mycorrhizal inoculation vs. high organic amendments. J Plant Nutr Soil Sci 171:872–877

    Article  Google Scholar 

  • Püschel D, Rydlová J, Vosátka M (2008b) Does the sequence of plant dominants affect mycorrhiza development in simulated succession on spoil banks? Plant Soil 302:273–282

    Article  Google Scholar 

  • Püschel D, Rydlová J, Sudová R, Gryndler M, Vosátka M (2011) The potential of mycorrhizal inoculation and organic amendment to increase yields of Galega orientalis and Helianthus tuberosus in a spoil bank substrate. J Plant Nutr Soil Sc 174:664–672

    Article  Google Scholar 

  • Qian M, Wang LP, Yin NN (2012) Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. Intl J Min Sci Technol 22:553–557

    CAS  Article  Google Scholar 

  • Redon PO, Béguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195

    CAS  Article  Google Scholar 

  • Rydlová J, Vosátka M (2001) Associations of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil banks. Folia Geobot 36:85–97

    Article  Google Scholar 

  • Rydlová J, Püschel D, Vosátka M, Charvátová K (2008) Different effect of mycorrhizal inoculation in direct and indirect reclamation of spoil banks. J Appl Bot Food Qual 82:15–20

    Google Scholar 

  • Rydlová J, Püschel D, Sudová R, Gryndler M, Mikanová O, Vosátka M (2011) Interaction of arbuscular mycorrhizal fungi and rhizobia: effects on flax yield in spoil-bank clay. J Plant Nutr Soil Sci 174:128–134

    Article  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families. Arthur Schüßler & Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Printed copy available under ISBN-13: 978–1466388048, ISBN-10: 1466388048

  • Singh A (2012) Pioneer flora on naturally revagetated coal mine spoil in a dry tropical environment. B Environ Pharmacol Life Sci 1(3):72–73

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd edn. Academic, London

    Google Scholar 

  • Souza LA, Andrade SAL, Souza SCR, Schiavinato MA (2013) Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiate in Pb-contaminated soils. Int J Phytoremediat 15:465–476

    CAS  Article  Google Scholar 

  • Subbainh BV, Asija GL (1956) A rapid procedure for the determination of available N in soils. Curr Sci India 25:259–260

    Google Scholar 

  • Sun YZ, Fan JS, Qin P, Niu HY (2009) Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China. Environ Geochem Health 31:81–89

    CAS  Article  Google Scholar 

  • Taheri WI, Bever JD (2011) Adaptation of Liquidambar styraciflua to coal tailings is mediated by arbuscular mycorrhizal fungi. Appl Soil Ecol 48:251–255

    Article  Google Scholar 

  • Wanasuria S, De Datta SK, Mengel K (1981) Rice yield in relation to electroultrafiltration extractable soil potassium. Plant Soil 59:23–31

    CAS  Article  Google Scholar 

  • Wang LP, Qian KM, He SL, Feng B (2009a) Fertilizing reclamation of arbuscular mycorrhizal fungi on coal mine complex substrate. The 6th International Conference on Mining Science & Technology. Procedia Earth Planet Sci 1:1101–1106

    Article  Google Scholar 

  • Wang LP, Zhang WW, Guo GX, Qian KM, Huang XP (2009b) Selection experiments for the optimum combination of AMF–plant–substrate for the restoration of coal mines. Min Sci Technol 19:479–482

    CAS  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • Wu FY, Bi YL, Wong MH (2009) Dual inoculation with an arbuscular mycorrhizal fungus and rhizobium to facilitate the growth of alfalfa on coal mine substrates. J Plant Nutr 32:755–771

    Article  Google Scholar 

  • Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (31200421 and 40861018), the Natural Science Foundation of Inner Mongolia, China (2012MS0603), the Foundation for Key Program of Ministry of Education, China (210032), and the National Key Technology R & D Program (2011BAC02B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, W., Zhao, R., Fu, R. et al. Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils. Environ Sci Pollut Res 21, 3592–3603 (2014). https://doi.org/10.1007/s11356-013-2360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2360-z

Keywords

  • Arbuscular mycorrhizal fungi
  • Coal mine spoils
  • Nutrient uptake
  • C:N:P stoichiometry
  • Heavy metal
  • Revegetation