Abstract
An outdoor pot experiment was designed to study the changes of growth parameters, accumulation, and distribution of Cd in poplar (Populus nigra L.) during a prolonged exposure period (growing period of 17 months including three harvest points), allowing the consideration of time effects and prolonged adaptation to Cd stress. Simultaneously, changes to the antioxidant system in roots and leaves were monitored. It was demonstrated that poplar could adapt to the Cd-contaminated soils after prolonged exposure. Total Cd accumulation in the aerial parts of poplar, due to high biomass production and acceptable Cd accumulation parameters, implies that the tested poplar species could be a good candidate for Cd phytoextraction application as well as could be used as phytostabilizer of Cd in heavily polluted soil. Furthermore, the activity of the antioxidant machinery displays both a tissue- and exposure-specific response pattern to different Cd treatments, indicating that strict regulation of the antioxidant defense system is required for the adaptive response of poplar. In addition, this report highlights the importance of prolonged exposure studies of physiological responses of plants, especially for long-life-cycle woody species under heavy metal stress, since some misleading conclusions could be reached after shorter time periods.
This is a preview of subscription content, access via your institution.



References
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3
Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements—review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126. doi:10.3923/jest.2011.118.138
Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to PAGE. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8
Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34. doi:10.1590/S1677-04202005000100003
Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120. doi:10.1016/j.jenvman.2012.04.002
Chance B, Maehly AC (1955) Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic, New York, pp 764–775
Dai HP, Shan CJ, Jia GL, Yang TX, Wei AZ, Zhao H, Wu SQ, Huo KK, Chen WQ, Cao XY (2013) Responses to cadmium tolerance, accumulation and translocation in Populus × canescens. Water Air Soil Poll 224:1504. doi:10.1007/s11270-013-1504-6
Domínguez MT, Marańón T, Murillo JM, Redondo-Gómez S (2011) Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere. Chemosphere 83:1166–1174. doi:10.1016/j.chemosphere.2011.01.002
Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421. doi:10.1093/jxb/err384
Esterbauer H, Grill D (1978) Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiol 61:119–121. doi:10.1104/pp. 61.1.119
Fuksová Z, Száková J, Tlustoš P (2009) Effects of co-cropping on bioaccumulation of trace elements in Thlaspi caerulescens and Salix dasyclados. Plant Soil Environ 55:461–467
Gaudet M, Pietrini F, Beritognolo I, Iori V, Zacchini M, Massacci A, Mugnozza GS, Sabatti M (2011) Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol 31:1309–1318. doi:10.1093/treephys/tpr088
Ge W, Jiao JQ, Sun BL, Qin R, Jiang WS, Liu DH (2012) Cadmium-mediated oxidative stress and ultrastructural changes in root cells of poplar cultivars. S Afr J Bot 83:98–108. doi:10.1016/j.sajb.2012.07.026
Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22–30. doi:10.1186/1745-6673-1-22
Habig WH, Pabst MJ, Fleischner G, Gatmaitan Z, Arias IM, Jakoby WB (1974) The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci U S A 71:3879–3882. doi:10.1073/pnas.71.10.3879
He J, Ma C, Ma Y, Li H, Kang J, Liu T, Polle A, Peng C, Luo ZB (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res Int 20:163–174. doi:10.1007/s11356-012-1008-8
He J, Qin J, Long LY, Ma YL, Li H, Li K, Jiang XN, Liu TX, Polle A, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plant 145:50–63. doi:10.1111/j.1399-3054.2011.01487
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I—Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1
Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37. doi:10.1155/2012/872875
Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32:626–638. doi:10.1093/treephys/tps032
Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman JF (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396. doi:10.1016/j.jprot.2009.01.014
Komárek M, Tlustoš P, Száková J, Chrastný V (2008) The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Environ Pollut 151:27–38. doi:10.1016/j.envpol.2007.03.010
Lanza de Sáe Melo Marques TCL, Soares AM (2011) Antioxidant system of ginseng under stress by cadmium. Scientia Agricola Sci Agric 68:482–488. doi:10.1590/S0103-90162011000400014
Li JT, Baker AJ, Ye ZH, Wang HB, Shu WS (2012) Phytoextraction of Cd-contaminated soils. Crit Rev Environ Sci Technol 42:2113–2152
Li S, Xue L, Xu S, Feng H, An L (2007) Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul 52:173–180. doi:10.1007/s10725-007-9188-9
Li S, Xue L, Xu S, Feng H, An L (2009) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63–71. doi:10.1016/j.envexpbot.2008.06.004
Liu Z, He X, Chen W, Yuan F, Yan K, Tao D (2009) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. J. Hazard Mater 169:170–175. doi:10.1016/j.jhazmat.2009.03.090
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37. doi:10.1093/jxb/erq281
Mohamed AA, Castagna A, Ranieri A, Sanità di Toppi L (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22. doi:10.1016/j.plaphy.2012.05.002
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
Nehnevajova E, Lyubenova L, Herzig R, Schröder P, Schwitzguebel JP, Schmulling T (2012) Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ Exp Bot 76:39–48. doi:10.1016/j.envexpbot.2011.10.005
Nikolić N, Kojić D, Pilipović A, Pajević S, Krstić B, Borišev M, Orlović S (2008) Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation and antioxidant enzyme activity. Acta Biol Cracov Bot 80:95–103
Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249
Pietrini F, Zacchini M, Iori V, Pietrosanti L, Bianconi D, Massacci A (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytoremediat 12:105–120. doi:10.1080/15226510902767163
Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540. doi:10.1016/S0160-4120(02)00152-6
Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474. doi:10.1038/nbt0595-468
Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83. doi:10.1016/S0378-4274(02)00381-8
Sharma P, Jha AB, Shanker Dubey R, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10.1155/2012/217037
Siedlecka A, Krupa Z (2002) Functions of enzymes in heavy metal treated plants. In: Prasad MNV, Kazimierz S (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic, Dordrecht, pp 314–3177
Singh S, Eapen S, D'Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant Bacopa monnieri L. Chemosphere 62:233–246. doi:10.1016/j.chemosphere.2005.05.017
Słomka A, Libik-Konieczny M, Kuta E, Miszalski Z (2008) Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. J Plant Physiol 165:1610–1619. doi:10.1016/j.jplph.2007.11.004
Toogood A (1999) Propagating plants. Dorling Kindersley, London
UNECE (2010a) Sampling and analysis of needles and leaves. ICP Forests Manual Part IV, pp 18.
UNECE (2010b) Sampling and analysis of soil. ICP Forests Manual Part X, pp 208.
Verma K, Shekhawat GS, Sharma A, Mehta SK, Sharma V (2008) Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3–4 leaf stage plants of Brassica juncea (L.) czern. Plant Cell Rep 27:1261–1269. doi:10.1007/s00299-008-0552-7
Vysloužilová M, Tlustoš P, Száková J (2003) Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49:542–547
Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149. doi:10.1007/s11104-008-9641-1
Wu F, Yang W, Zhang J, Zhou L (2010) Cadmium accumulation and growth responses of a poplar (Populus deltoides × Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater 177:268–273. doi:10.1016/j.jhazmat.2009.12.028
Zhao FY, Han MM, Zhang SY, Wang K, Zhang CR, Liu T, Liu W (2012) Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. J Integr Plant Biol 54:991–1006. doi:10.1111/j.1744-7909.2012.01170.x
Acknowledgments
We are grateful to Croatian Forest Research Institute team; Ivica Čehulić, the nursery manager, and his staff as well as analysts Renata Tubikanec and Monika Hlebić for the assistance in the field and the laboratory experiment. Support from the Ministry of Science, Education and Sports, Republic of Croatia (Grant No. 0582261-2256) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Elena Maestri
Rights and permissions
About this article
Cite this article
Jakovljević, T., Bubalo, M.C., Orlović, S. et al. Adaptive response of poplar (Populus nigra L.) after prolonged Cd exposure period. Environ Sci Pollut Res 21, 3792–3802 (2014). https://doi.org/10.1007/s11356-013-2292-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-013-2292-7
Keywords
- Antioxidative enzymes
- Cadmium
- Heavy metal stress
- Phytoremediation
- Populus nigra
- Prolonged exposure period