Skip to main content
Log in

A spatiotemporal model for predicting grain aphid population dynamics and optimizing insecticide sprays at the scale of continental France

  • Crop protection: new strategies for sustainable development
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We expose here a detailed spatially explicit model of aphid population dynamics at the scale of a whole country (Metropolitan France). It is based on convection–diffusion-reaction equations, driven by abiotic and biotic factors. The target species is the grain aphid, Sitobion avenae F., considering both its winged and apterous morphs. In this preliminary work, simulations for year 2004 (an outbreak case) produced realistic aphid densities, and showed that both spatial and temporal S. avenae population dynamics can be represented as an irregular wave of population peak densities from southwest to northeast of the country, driven by gradients or differences in temperature, wheat phenology, and wheat surfaces. This wave pattern fits well to our knowledge of S. avenae phenology. The effects of three insecticide spray regimes were simulated in five different sites and showed that insecticide sprays were ineffective in terms of yield increase after wheat flowering. After suitable validation, which will require some further years of observations, the model will be used to forecast aphid densities in real time at any date or growth stage of the crop anywhere in the country. It will be the backbone of a decision support system, forecasting yield losses at the level of a field. The model intends then to complete the punctual forecasting provided by older models by a comprehensive spatial view on a large area and leads to the diminution of insecticide sprayings in wheat crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akli M (1984) Effets des facteurs variétal et phénologique de six cultivars de blé d'hiver sur le potentiel biotique de Sitobion avenae Fabricius. Mémoire DEA, Université de Rennes 1. Ecole Nationale Supérieure Agronomique de Rennes, Rennes

    Google Scholar 

  • Al Hassan D, Parisey N, Burel F, Plantegenest M, Kindlmann P, Butet A (2012) Relationship between the abundance of aphids and their natural enemies in cereal fields and landscape composition. Eur J Environ Sci 2:89–101

    Google Scholar 

  • Andow DA, Kareiva PM, Levin SA, Okubo A (1990) Spread of invading organisms. Landsc Ecol 4:177–188

    Article  Google Scholar 

  • Arléry R (1979) Le climat de la France. Direction de la Météorologie Nationale, Paris

    Google Scholar 

  • Beament JW, Treherne JE (1966) Advances in Insect Physiology, vol 3. Elsevier Science and Technology Books, London

    Google Scholar 

  • Berestycki H, Rossi L (2008) Reaction–diffusion equations for population dynamics with forced speed I—the case of the whole space. Discret Contin Dyn Syst 21:41–67

    Article  Google Scholar 

  • Butault J-P, Dedryver C-A, Gary C, Guichard L, Jacquet F, Meynard J-M, Nicot P, Pitrat M, Reau R, Sauphanor B, Savini I, Volay T (2010) Quelles voies pour réduire l'usage des pesticides ? Synthèse du rapport d’étude. Ecophyto R et D, INRA, France

    Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction–diffusion equations. Wiley, London

    Google Scholar 

  • Carter N, Dixon AFG, Rabbinge R (1982) Cereal aphid populations: biology, simulation, and prediction. Center for Agricultural Publishing and Documentation. Pudoc, Wageningen

    Google Scholar 

  • Ciss M, Parisey N, Dedryver C-A, Pierre J-S (2013) Understanding flying insect dispersion: Multiscale analyses of fragmented landscapes. Ecol Inform 14:59–63

    Article  Google Scholar 

  • Compton SG (2002) Sailing with the wind: dispersal by small flying insects. Dispersal Ecology. In: Bullock JM, Kenward RE, Hails RS (eds) The 42nd Symposium of the British Ecological Society, 2–5 April 2001, The University of Reading. Blackwell Science, Oxford, pp 113–133

    Google Scholar 

  • Couteux A, Lejeune V (2013) Index phytosanitaire ACTA. Acta, Paris

    Google Scholar 

  • Dean GJ (1974) Effect of temperature on the cereal aphids Metopolophium dirhodum (Wlk.), Rhopalosiphum padi (L.), and Macrosiphum avenae (F.) (Hem., Aphididae). Bull Entomol Res 63:401–409

    Article  Google Scholar 

  • Dedryver CA, Fiévet M, Plantegenest M, Vialatte A (2009) An overview of the functioning of Sitobion avenae populations at three spatial scales in France. Redia 92:159–162

    Google Scholar 

  • Dedryver CA, Fougeroux A, De La Messeliere C, Pierre JS, Taupin P (1987) Typologie des courbes de fluctuations des populations de pucerons des céréales sur le blé d'hiver dans le Bassin parisien et élaboration d'un modèle de prévision des pullulations de Sitobion avenae. In Annales de la première conférence sur les ravageurs en agriculture, 1–3 décembre 1987, pp 93–104

  • Dedryver CA, Gelle A (1982) Biologie des pucerons des céréales dans l'ouest de la France IV—étude de l'hivernation de populations anholocycliques de Rhopalosiphum padi L., Metopolophium dirhodum Wlk. et Sitobion avenae F. sur repousses de céréales dans trois stations de Bretagne et du Bassin parisien. Acta Oecologica Oecologia Applicata 3:341–342

    Google Scholar 

  • Dedryver CA, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damage and control strategies. C R Biol 333:539–553

    Article  Google Scholar 

  • Dedryver CA, Tanguy S (1984) Biologie des pucerons des céréales dans l'ouest de la France V—influence de la date de semis du blé d'hiver sur les modalités d'infestation des parcelles par Sitobion avenae, Metopolophium dirhodum, Rhopalosiphum padi et sur le développement de leur population de printemps. Agronomie 4:711–719

    Article  Google Scholar 

  • Dixon AFG (1987) Cereal aphids as an applied problem. Agric Zool Rev 2:1–57

    Google Scholar 

  • Dixon AFG (1998) Aphid Ecology, Ed Springer. Chapman and Hall, London

    Google Scholar 

  • Dry WW, Taylor LR (1970) Light and temperature thresholds for take-off by aphids. J Anim Ecol 39:493–504

    Article  Google Scholar 

  • FAO (2010) Food and Agriculture Organization (FAO) for the United Nations website. Accessed 30th January, 2013. In. http://faostat.fao.org/site/339/default.aspx

  • Fiévet V, Dedryver CA, Plantegenest M, Simon JC, Outreman Y (2007) Aphid colony turn-over influences the spatial distribution of the grain aphid Sitobion avenae over the wheat growing season. Agric For Entomol 9:125–134

    Article  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:335–369

    Google Scholar 

  • Hadeler KP, Hillen T, Lewis MA (2009) Biological modeling with quiescent phases. In: Cantrell S, Cosner C, Ruan S (eds) Spatial Ecology. CRC Press, Boca Raton, pp 101–127

    Google Scholar 

  • Hadeler KP, Lewis MA (2002) Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Can Appl Math Q 10:472–499

    Google Scholar 

  • Hansen LM (2006) Models for spring migration of two aphid species Sitobion avenae (F) and Rhopalosiphum padi (L.) infesting cereals in areas where they are entirely holocyclic. Agric For Entomol 8:83–88

    Article  Google Scholar 

  • Hardie J (1993) Flight behavior in migrating insects. J Agric Entomol 10:239–245

    Google Scholar 

  • Kennedy J, Booth C (1963) Free flight of aphids in the laboratory. J Exp Biol 40:67–85

    Google Scholar 

  • Kindlmann P, Jarošík V, Dixon AFG (2007) Population dynamics. In: Van Emden H, Harrington R (eds) Aphids as crop pests. CAB International, Oxon, United Kingdom, pp 311–329

    Chapter  Google Scholar 

  • Kolmogorov A, Petrovsky I, Piskunov N (1937) Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin de Mathématiques de l'Université de Moscou Série internationale A 1:1–26

    Google Scholar 

  • Latteur G, Oger R (1987) Principes de base du système d'avertissement relatif à la lutte contre les pucerons des froments d'hiver en Belgique. In Annales de la première conférence sur les ravageurs en agriculture, 1–3 décembre 1987, Paris, pp 129–136

  • Llewellyn KS, Loxdale HD (2003) Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol Ecol 12:21–34

    Article  CAS  Google Scholar 

  • Loxdale HD, Hardie J, Halbert S, Foottit R, Kidd NAC, Carter CI (1993) The relative importance of short and long-range movement of flying aphids. Biol Rev 68:291–311

    Article  Google Scholar 

  • Loxdale HD, Lushai G (1999) Slaves of the environment: the movement of herbivorous insects in relation to their ecology and genotype. Phil Trans R Soc London B 354:1479–1498

    Article  Google Scholar 

  • Loxdale HD, Tarr IJ, Weber CP, Brookes CP, Digby PGN, Castañera P (1985) Electrophoretic study of enzymes from cereal aphid populations. III. Spatial and temporal genetic variation of populations of Sitobion avenae (F.) (Hemiptera: Aphididae). Bull Entomol Res 75:121–142

    Article  Google Scholar 

  • Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal patterns on stream populations. Siam Rev 47:749–772

    Article  Google Scholar 

  • Moericke B (1955) Über die LebensGewohnheiten der geflügelten Blattläuse (Aphidina) unter besonderer Berücksichtigung des Verhaltens beim Landen. Z Angew Entomol 37:29–91

    Article  Google Scholar 

  • Mozner Z, Tabi A, Csutora M (2012) Modifying the yield factor based on more efficient use of fertilizer: the environmental impacts of intensive and extensive agricultural practices. Ecol Indic 16:58–66

    Article  CAS  Google Scholar 

  • Murray JD (2003) Mathematical Biology—Tome 2: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, Berlin

    Google Scholar 

  • Needelman BA, Ruppert DE, Vaughan RE (2007) The role of ditch soil formation and redox biogeochemistry in mitigating nutrient and pollutant losses from agriculture. J Soil Water Conserv 62:207–215

    Google Scholar 

  • Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, New York

    Google Scholar 

  • Pachepsky E, Lutscher F, Nisbet RM, Lewis MA (2005) Persistence, spread, and the drift paradox. Theor Popul Biol 67:61–73

    Article  CAS  Google Scholar 

  • Pärn J, Pinay G, Mander U (2012) Indicators of nutrients transport from agricultural catchments under temperate climate: a review. Ecol Indic 22:4–15

    Article  Google Scholar 

  • Parry HR, Evans AJ, Morgan D (2006) Aphid population response to agricultural landscape change: a spatially explicit, individual-based model. Ecol Model 199:451–463

    Article  Google Scholar 

  • Pierre JS (2007) Les mathématiques contre les pucerons. Biofutur 279:26

    Google Scholar 

  • Pierre JS, Dedryver CA (1984) Un modèle de régression multiple appliqué à la prévision des pullulations d'un puceron des céréales: Sitobion avenae F., sur ble d'hiver. Acta Oecologica-Oecologia Applicata 5:153–.172

    Google Scholar 

  • Plantegenest M (1995) Modélisation de la dynamique de population du puceron des épis (Sitobion avenae F.) sur le blé d'hiver au printemps et en été—Application au raisonnement de la lutte chimique. Thèse, Université François Rabelais, Tours, France

  • Plantegenest M, Kindlmann P (1999) Evolutionarily stable strategies of migration in heterogeneous environments. Evol Ecol 13:229–244

    Article  Google Scholar 

  • Plantegenest M, Pierre JS, Dedryver CA, Kindlmann P (2001) Assessment of the relative impact of different natural enemies on population dynamics of the grain aphid Sitobion avenae in the field. Ecol Entomol 26:404–410

    Article  Google Scholar 

  • Plantegenest M, Pierre JS, Van Waetermeulen X, Astruc E (1999) COLIBRI: les bases scientifiques d'un modèle de prévision des populations du puceron des épis Sitobion avenae. Phytoma la Defense des Vegetaux 516:26–29

    Google Scholar 

  • R Development Core Team (2012) R: A Language and Environment for Statistical Computing. In. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rabbinge R, Ankersmit GW, Pak GA (1979) Epidemiology and simulation of population development of Sitobion avenae in winter wheat. Netherlands J Plant Pathol 85:197–220

    Article  Google Scholar 

  • Rask M, Olin M, Ruuhijarvi J (2010) Fish-based assessment of ecological status of Finnish lakes loaded by diffuse nutrient pollution from agriculture. Fish Manag Ecol 17:126–133

    Article  Google Scholar 

  • Richter O, Moenickes S, Suhling F (2012) Modeling the effect of temperature on the range expansion of species by reaction–diffusion equations. Math Biosci 235:171–181

    Article  Google Scholar 

  • Robinet C (2006) Modélisation mathématique des phénomènes d’invasion en écologie : exemple de la chenille processionnaire du pin. Thèse, Ecole des Hautes Etudes en Sciences Sociales, Paris, France

  • Roques L (2004) Equations de réaction-diffusion non-linéaires et modélisation en écologie. Thèse, Université Pierre et Marie Curie, Paris 6, Paris, France

  • Roques L, Auger-Rozenberg MA, Roques A (2008) Modeling the impact of an invasive insect via reaction–diffusion. Math Biosci 216:47–55

    Article  Google Scholar 

  • Rossberg D, Freier B, Holz F, Wenzel V (1986) PESTSIM-MAC A model for simulation of Macrosiphum avenae F. populations. In Tagungsbericht Akademie der Landwirtschaftswissenschaften der DDR (German DR), Vol 242, Berlin, pp 87–100

  • Saiyed IM, Bullock PR, Sapirstein HD, Finlay GJ, Jarvis CK (2009) Thermal time models for estimating wheat phenological development and weather-based relationships to wheat quality. Can J Plant Sci 89:429–439

    Article  Google Scholar 

  • Salman AMA (2006) Influence of temperature on the developmental rate and reproduction of the English grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Arab Univ J Agric Sci, Ain Shams Univ, Cairo 14:789–801

    Google Scholar 

  • Saltelli A, Chan K, Scott EM (2009) Sensitivity Analysis. John Wiley and Sons Publication, Chichester

    Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Simon JC, Baumann S, Sunnucks P, Hebert PDN, Pierre JS, Le Gallic JF, Dedryver CA (1999) Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers. Mol Ecol 8:531–545

    Article  CAS  Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    Article  CAS  Google Scholar 

  • Smoller J (1994) Shockwaves and reaction–diffusion equations—2nd edition. Springer, Berlin

    Google Scholar 

  • Tatchell GM (1989) An estimate of the potential economic losses to some crops due to aphids in Britain. Crop Prot 8:25–29

    Article  Google Scholar 

  • Turchin P (1998) Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sinauer, Sunderland

    Google Scholar 

  • Vereijken PH (1979) Feeding and multiplication of three cereal aphid species and their effect on yield of winter wheat. R. Pudoc, PhD Thesis, Wageningen, Netherland

  • Vialatte A, Dedryver CA, Camus D, Plantegenest M (2005) Vers un OAD de traitement des pucerons des épis au printemps. Compte-rendus de la VIIeme conférence internationale sur les ravageurs en agriculture Montpellier, France, octobre 2005 CD-Rom Acariens-CIRA: 2-905550-02-3

  • Vialatte A, Plantegenest M, Simon JC, Dedryver CA (2007) Farm-scale assessment of movement patterns and colonization dynamics of the grain aphid in arable crops and hedgerows. Agric For Entomol 9:337–346

    Article  Google Scholar 

  • Walters KFA, Dixon AFG (1984) The effect of temperature and wind on the flight activity of cereal aphids. Ann Appl Biol 104:17–26

    Article  Google Scholar 

  • Watt AD (1979) The effect of cereal growth stages on the reproductive activity of Sitobion avenae and Metopolophium dirhodum. Ann Appl Biol 91:147–157

    Article  Google Scholar 

  • Watt AD, Dixon AFG (1981) The role of cereal growth stages and crowding in the induction of alate in Sitobion avenae and its consequences for population growth. Ecol Entomol 6:441–447

    Article  Google Scholar 

  • Wohlfahrt J, Colin F, Assaghir Z, Bockstaller C (2010) Assessing the impact of the spatial arrangement of agricultural practices on pesticide runoff in small catchments: combining hydrological modeling and supervised learning. Ecol Indic 10:826–839

    Article  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1977) Un code décimal pour les stades de croissance des céréales. Phytiatrie-Phytopharmacie 26:129–140

    Google Scholar 

Download references

Acknowledgments

This research was managed in collaboration with INRA, the University of Rennes 1 and Arvalis-Institut du Végétal. It was funded by a CIFRE grant from the French Ministry of National Education, Advanced Instruction, and Research and from Arvalis-Institut du Végétal. The authors are also grateful to Bayer Cropscience France and Makhteshim Agan France for providing field data for calculation of aphid growth rate. We thank the ASP (Agence de Services et de Paiement) for providing the “Registre Parcellaire Graphique” (RPG) Geographic Information System. We are also grateful to Vincent Faloya (INRA UMR 1349 IGEPP) and Cédric Wolf (Université Rennes1, CNRS UMR 6553 ECOBIO) for scientific exchanges. We thank M. Jean-François Chollet and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Ciss.

Additional information

Responsible editor: Michael Matthies

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciss, M., Parisey, N., Moreau, F. et al. A spatiotemporal model for predicting grain aphid population dynamics and optimizing insecticide sprays at the scale of continental France. Environ Sci Pollut Res 21, 4819–4827 (2014). https://doi.org/10.1007/s11356-013-2245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2245-1

Keywords

Navigation