Skip to main content

Advertisement

Log in

Source, distribution, and health risk assessment of polycyclic aromatic hydrocarbons in urban street dust from Tianjin, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To better assess and understand potential health risk of urban residents exposed to urban street dust, the total concentration, sources, and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in 87 urban street dust samples from Tianjin as a Chinese megacity that has undergone rapid urbanization were investigated. In the meantime, potential sources of PAHs were identified using the principal component analysis (PCA), and the risk of residents’ exposure to PAHs via urban street dust was calculated using the Incremental Lifetime Cancer Risk (ILCR) model. The results showed that the total PAHs (∑PAHs) in urban street dust from Tianjin ranged from 538 μg kg−1 to 34.3 mg kg−1, averaging 7.99 mg kg−1. According to PCA, the two to three- and four to six-ring PAHs contributed 10.3 and 89.7 % of ∑PAHs, respectively. The ratio of the sum of major combustion specific compounds (ΣCOMB) / ∑PAHs varied from 0.57 to 0.79, averaging 0.64. The ratio of Ant/(Ant + Phe) varied from 0.05 to 0.41, averaging 0.10; Fla/(Fla + Pyr) from 0.40 to 0.68, averaging 0.60; BaA/(BaA + Chry) from 0.29 to 0.51, averaging 0.38; and IcdP/(IcdP + BghiP) from 0.07 to 0.37, averaging 0.22. The biomass combustion, coal combustion, and traffic emission were the main sources of PAHs in urban street dust with the similar proportion. According to the ILCR model, the total cancer risk for children and adults was up to 2.55 × 10−5 and 9.33 × 10−5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartoš T, Čupr P, Klánová J, Holoubek I (2009) Which compounds contribute most to elevated airborne exposure and corresponding health risks in the Western Balkans? Environ Int 35:1066–1071

    Article  Google Scholar 

  • Chen SC, Liao CM (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123

    Article  CAS  Google Scholar 

  • Chen LG, Ran Y, Xing BS, Mai BX, He JH, Wei XG, Fu JM, Sheng GY (2005) Concents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetables soils of Guangzhou, China. Chemosphere 60:879–890

    Article  CAS  Google Scholar 

  • Choi SD, Ghim YS, Lee JY, Kim JY, Kim YP (2012) Factors affecting the level and pattern of polycyclic aromatic hydrocarbons (PAHs) at Gosan, Korea during a dust period. J Hazard Mater 227–228:79–87

    Google Scholar 

  • Dong TTT, Lee BK (2009) Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 74:1245–1253

    Article  CAS  Google Scholar 

  • Dvorská A, Lammel G, Klánová J (2011) Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmos Environ 45:420–427

    Article  Google Scholar 

  • Dvorská A, Komprdová K, Lammel G, Klánová J, Plachá H (2012) Polycyclic aromatic hydrocarbons in background air in central Europe—seasonal levels and limitations for source apportionment. Atmos Environ 46:147–154

    Article  Google Scholar 

  • Eom IC, Rast C, Veber AW, Vasseur P (2007) Ecotoxicity of a polycyclic aromatic hydrocarbon(PAH)- contaminated soil. Ecotoxicol Environ Saf 67:190–205

    Article  CAS  Google Scholar 

  • Finlayso-Pitts BJ, Pitts JJN (1997) Troposperic air pollution ozone, airbome toxics, polycyclic aromatic hydrocarbons and particles. Science 276:1045–1051

    Article  Google Scholar 

  • Grote M, Schüürmann G, Altenburger R (2005) Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons. Environ Sci Technol 39:4141–4149

    Article  CAS  Google Scholar 

  • Han B, Bai ZP, Guo GH, Wang F, Li F, Liu QX, Ji YQ, Li X, Hu YD (2009) Characterization of PM10 fraction of road dust for polycyclic aromatic hydrocarbons (PAHs) from Anshan, China. J Hazard Mater 170:934–940

    Article  CAS  Google Scholar 

  • Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol 30:625–632

    Article  Google Scholar 

  • Hassanien MA, Abdel-Latif NM (2008) Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. J Hazard Mater 151:247–254

    Article  CAS  Google Scholar 

  • Hwang HM, Wade TL, Sericano JL (2003) Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmos Environ 37:2259–2267

    Article  CAS  Google Scholar 

  • Jiao WT, Lu YL, Li J, Han JY, Wang TY, Luo W, Shi YJ, Wang G (2009) Identification of sources of elevated concentrations of polycyclic aromatic hydrocarbons in an industrial area in Tianjin, China. Environ Monit Assess 158:581–592

    Article  CAS  Google Scholar 

  • Jiries A (2003) Vehicular contamination of dust in Amman, Jordan. Environmentalist 23:205–210

    Article  Google Scholar 

  • Joop V (2007) Urban soils—an emerging problem? J Soils Sediments 7:63

    Article  Google Scholar 

  • Knafla A, Phillipps KA, Brecher RW, Petrovic S, Richardson M (2006) Development of a dermal cancer slope factor for benzo[a]pyrene. Regul Toxicol Pharmacol 45:159–168

    Article  CAS  Google Scholar 

  • Larsen RK, Baker JE III (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881

    Article  CAS  Google Scholar 

  • Lee BK, Dong TTT (2011) Toxicity and source assignment of polycyclic aromatic hydrocarbons in road dust from urban resident and industrial areas in a typical industrial city in Korea. Journal of Material Cycles and Waste Management 13:34–42

    Article  CAS  Google Scholar 

  • Li XH, Ma LL, Liu XF, Fu S, Cheng HX, Xu XB (2006) Polycyclic aromatic hydrocarbon in urban soils from Beijing, China. J Environ Sci 18:944–950

    Article  CAS  Google Scholar 

  • Liao CM, Chiang KC (2006) Probabilistic assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere 63:1610–1619

    Article  CAS  Google Scholar 

  • Liu M, Cheng SB, Ouyang DN, Hou LJ, Gao L, Wang LL, Xie YS, Yang Y, Xu SY (2007) Characterization, identification of road dust PAHs in Central Shanghai Areas, China. Atmos Environ 41:8785–8795

    Article  CAS  Google Scholar 

  • Liu SD, Xia XH, Yang LY, Shen MH, Liu RM (2010) Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: distribution, sources and their correlation with the city’s urbanization history. J Hazard Mater 177:1085–92

    Article  CAS  Google Scholar 

  • Lorenzi D, Entwistle JA, Cave M, Dean JR (2011) Determination of polycyclic aromatic hydrocarbons in urban street dust: implication for human health. Chemosphere 83:970–977

    Article  CAS  Google Scholar 

  • Lu H, Zhu L, Chen S (2008) Pollution level phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China. Environ Pollut 152:569–575

    Article  CAS  Google Scholar 

  • Luo XJ, Chen SJ, Mai BX, Sheng GY, Fu JM, Zeng EY (2008) Distribution, source apportionment, and transport of PAHs in sediments from the Pearl River Delta and the Northern South China Sea. Arch Environ Contam Toxicol 55:11–20

    Article  CAS  Google Scholar 

  • Lv JG, Shi RG, Cai YM, Liu Y (2010) Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China. Bull Environ Contam Toxicol 85:5–9

    Article  CAS  Google Scholar 

  • Maertens RM, Yang XF, Zhu JP, Gagne RW, Douglas GR, White PA (2008) Mutagenic and carcinogenic hazards of settled house dust I: polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ Sci Technol 42(5):1747–1753

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11:121–127

    Article  Google Scholar 

  • Maselet P, Mouvier G, Nikolaou K (1986) Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmos Environ 20:439–446

    Article  Google Scholar 

  • Mielke HW, Gonzales CR, Smith MK, Mielke PW (1991) The urban environment and children’s health: soil as an integrator of lead, zinc and cadmium in New Orleans, Louisiana, USA. Environ Res 81:117–129

    Article  Google Scholar 

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Ounnas F, Jurjanz S, Dziurla MA, Guiavarc’h Y, Feidt C, Rychen G (2009) Relative bioavailability of soil-bound polycyclic aromatic hydrocarbons in goats. Chemosphere 77:115–122

    Article  CAS  Google Scholar 

  • Peng C, Chen WP, Liao XL, Wang ME, Ouyang ZY, Jiao WT, Bai Y (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut 159:802–808

    Article  CAS  Google Scholar 

  • Pu XZ, Lee LS, Galinsky RE, Carlson GP (2004) Evaluation of a rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils. Toxicol Sci 79:10–17

    Article  CAS  Google Scholar 

  • Schooten FJ, Moonen EJC, Wal L, Levels P, Kleinjans JCS (1997) Determination of polycyclic aromatic hydrocarbons (PAH) and their metabolites in blood, feces, and urine of rats orally exposed to PAH-contaminated soils. Arch Environ Contam Toxicol 33:317–322

    Article  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Google Scholar 

  • US EPA (1991) Risk assessment guidance for superfund, part B (calculation of risk-based preliminary remediation goals) Washington, D. C. EPA/540/R-92/003

  • US EPA (1994) Integrated Risk Information System. “Benzo[a]pyrene (BaP)(CASRN 50-32-8)” from http://www.epa.gov/iris/subst/0136.htm. Accessed 8 Oct 2012

  • US EPA (2002) Supplemental guidance for developing soil screening levels for superfund sites. OSWER; 2002 [9355.4-24]

  • Wang Z, Chen JW, Qiao XL, Yang P, Tian FL, Huang LP (2007) Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere 68:965–971

    Article  CAS  Google Scholar 

  • Wang W, Huang MJ, Kang Y, Wang HS, Leung AOW, Cheung KC, Wang MH (2011) Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ 409:4519–4527

    Article  CAS  Google Scholar 

  • Wilcke W (2007) Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 141:157–166

    Article  CAS  Google Scholar 

  • Yu XZ, Gao Y, Wu SC, Zhang HB, Cheung KC, Wong MH (2006) Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China affected by recycling of electronic waste using primitive technologies. Chemosphere 65:1500–1509

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, Kumata H (2002) Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ Sci Technol 36:1907–1918

    Article  CAS  Google Scholar 

  • Zhang ZL, Huang J, Yu G, Hong HS (2004) Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ Pollut 130:249–261

    Article  CAS  Google Scholar 

  • Zhou QX (2005) Health soil science: soil health quality and safety of agricultural products (in Chinese). Science Press, Beijing, China

    Google Scholar 

  • Zhou QX, Kong FX, Zhu L (2004) Ecotoxicology (in Chinese). Science Press, Beijing, China

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge that this work was financially supported by the National Natural Science Foundation of China as a key project (grant no. 21037002) and the National Key Basic Research Program (973) of China (grant no. 2011CB503802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixing Zhou.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Xie, X., Ma, L.Q. et al. Source, distribution, and health risk assessment of polycyclic aromatic hydrocarbons in urban street dust from Tianjin, China. Environ Sci Pollut Res 21, 2817–2825 (2014). https://doi.org/10.1007/s11356-013-2190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2190-z

Keywords

Navigation