Environmental Science and Pollution Research

, Volume 21, Issue 4, pp 2611–2627 | Cite as

Geochemical behavior of metals and metalloids in an estuary affected by acid mine drainage (AMD)

  • A. Hierro
  • M. Olías
  • M. E. Ketterer
  • F. Vaca
  • J. Borrego
  • C. R. Cánovas
  • J. P. BolivarEmail author
Research Article


The Tinto and Odiel rivers in southwest Spain drain the world’s largest sulfide mineral formation: the Iberian Pyrite Belt which has been worked since 2,500 BC. The Tinto and Odiel estuarine zones include both an extensive area of salt marsh and an intensively industrialized urban area. As a consequence of pyrite oxidation, the Tinto and Odiel rivers are strongly acidic (pH < 3) with unusually high and quite variable metal concentrations. In this study, seasonally varying concentrations of dissolved major and trace elements were determined in the acid mine drainage affected estuary of the Ría de Huelva. During estuarine mixing, ore-derived metal concentrations exhibit excellent correlations with pH as the main controlling parameter. As pH increases, concentrations of dissolved ore-associated elements are attenuated, and this process is enhanced during the summer months. The decrease in Fe and Al concentrations ranged from 80 to 100 % as these elements are converted from dissolved to sediment-associated forms in the estuary. Coprecipitation/adsorption processes also removed between 60 and 90 % of the originally dissolved Co, Cu, Mn, Pb, Zn, and Th; however, Cd and Ni exhibited a greater propensity to remain in solution, with an average removal of approximately 60 %. On the other hand, As and U exhibited a different behavior; it is likely that these elements remain in dissolved forms because of the formation of U carbonates and soluble As species. Concentrations of As remain at elevated levels in the outer estuary (average = 48 μg L−1) which exceeds concentrations present in the Tinto River. Nevertheless, the estuary has recently witnessed improvements in water quality, as compared to results of several previous studies reported in the 1990s.


Ría de Huelva estuary Estuarine mixing Acid mine drainage Trace elements Coprecipitation Adsorption/desorption Pyrite oxidation 



This paper has been partially founded by the project Modeling and characterization of Huelva phosphogypsum stacks for its management and environmental control (RNM-6300).

Supplementary material

11356_2013_2189_MOESM1_ESM.docx (59 kb)
ESM 1 DOCX 58 kb


  1. Achterberg EP, Herzl VMC, Braungardt CB, Millward GE (2003) Metal behaviour in an estuary polluted by acid mine drainage: the role of particulate matter. Environ Pollut 121:283–292CrossRefGoogle Scholar
  2. Appelo CAJ, Van der Weiden MJJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36(14):3096–3103CrossRefGoogle Scholar
  3. Audry S, Blanc G, Schäfer J, Guérin F, Masson M, Robert S (2007) Budgets of Mn, Cd and Cu in the macrotidal Gironde estuary (SW France). Mar Chem 107:433–448CrossRefGoogle Scholar
  4. Baeyens W, Elskens M, Gillain G, Goeyens L (1998) Biogeochemical behaviour of Cd, Cu, Pb and Zn in the Scheldt estuary during the period 1981–1983. Hydrobiologia 366:15–44CrossRefGoogle Scholar
  5. Bewers J, Yeats PA (1989) Transport of river-derived trace metals through the coastal zone. Neth J Sea Res 23(4):359–368CrossRefGoogle Scholar
  6. Bigham JM, Schwertmann SJ, Traina S, Winland RL, Wolf M (1996) Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121CrossRefGoogle Scholar
  7. Bolivar JP, García-Tenorio R, Vaca F (2000) Radioecological study of an estuarine system located in the south of Spain. Water Res 11:2941–2950CrossRefGoogle Scholar
  8. Bolivar JP, García-Tenorio R, Mas JL, Vaca F (2002) Radioactive impact in sediments from an estuarine system affected by industrial wastes releases. Environ Int 27:639–645CrossRefGoogle Scholar
  9. Bolivar JP, Martín JE, García-Tenorio R, Pérez-Moreno JP, Mas JL (2009) Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant. Appl Radiat Isotopes 67:345–356CrossRefGoogle Scholar
  10. Borrego J, López-González N, Carro B, Lozano-Soria O (2005) Geochemistry of rare-earth elements in Holocene sediments of an acidic estuary: environmental markers (Tinto River Estuary, South-Western Spain). J Geochem Explor 86:119–129CrossRefGoogle Scholar
  11. Borrego J, Carro B, López-González N, de la Rosa J, Grande JA, Gómez T, de la Torre ML (2012) Effect of acid mine drainage on dissolved rare earth elements geochemistry along a fluvial-estuarine system: the Tinto–Odiel Estuary (S.W. Spain). Hydrol. Res 43(3):262–274Google Scholar
  12. Braungardt CB, Achterberg EP, Elbaz-Poulichet F, Morley NH (2003) Metal geochemistry in a mine-polluted estuarine system in Spain. Appl Geochem 18:1757–1771CrossRefGoogle Scholar
  13. Cai WJ, Wang Y (1998) The chemistry, fluxes and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers. Georgian Limnol Oceanogr 43:657–668CrossRefGoogle Scholar
  14. Cánovas CR, Olías M, Nieto JM, Sarmiento AM, Cerón JC (2007) Hydrogeochemical characteristics of the Tinto and Odiel rivers (SW Spain). Factors controlling metal contents. Sci Total Environ 373:363–382CrossRefGoogle Scholar
  15. Cánovas CR, Olías M, Nieto JM, Galván L (2010) Wash-out processes of evaporitic sulfate salts in the Tinto River: hydrogeochemical evolution and environmental impact. Appl Geochem 25:288–301CrossRefGoogle Scholar
  16. Carro B, Borrego J, López-González N, Grande JA, Gómez T, de la Torre ML, Valente T (2011) Impact of acid mine drainage on the hydrogeochemical characteristics of the Tinto–Odiel Estuary (SW Spain). J Iber Geol 37(1):87–96CrossRefGoogle Scholar
  17. Drever JI (1997) The geochemistry of natural waters. Surface and groundwater environments. Prentice Hall, New JerseyGoogle Scholar
  18. Elbaz-Poulichet F, Morley N, Cruzado A, Velasquez Z, Achterberg E, Braungardt C (1999) Trace metal and nutrient distribution in an extremely low pH (2.5) river-estuarine system, the Ria of Huelva (South-West Spain). Sci Total Environ 227:73–83CrossRefGoogle Scholar
  19. Elbaz-Poulichet F, Dupuy C, Cruzado A, Velasquez Z, Achterberg E, Braungardt C (2000) Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto river, Spain). Water Res 34(12):3222–3230CrossRefGoogle Scholar
  20. Elbaz-Poulichet F, Braungardt C, Achterberg E, Morley N, Cossa D, Beckers JM (2001) Metal biogeochemistry in the Tinto–Odiel rivers (Southern Spain) and in the Gulf of Cadiz: a synthesis of the results of TOROS project. Cont Shelf Res 21:1961–1973CrossRefGoogle Scholar
  21. Fernández-Caliani JC, Ruiz Muñoz F, Galán E (1997) Clay mineral and heavy metal distributions in the lower estuary of Huelva and adjacent Atlantic shelf, SW Spain. Sci Total Environ 198:181–200CrossRefGoogle Scholar
  22. Fernández-Caliani JC, Galán E (1997) Formación de yeso autigénico en la llanura de inundación del río Tinto (Huelva). Implicaciones paleoambientales. Geogaceta 21:101–104Google Scholar
  23. Grande JA, Borrego J, Morales JA, de la Torre ML (2003) A description of how metal pollution occurs in the Tinto–Odiel ria (Huelva-Spain) through the application of cluster analysis. Mar Pollut Bull 46:475–480CrossRefGoogle Scholar
  24. Grande JA, de la Torre ML, Cerón JC, Beltrán R, Gómez T (2010) Overall hydrochemical characterization of the Iberian Pyrite Belt. Main acid mine drainage-generating sources (Huelva, SW Spain). J Hydrol 390(3–4):123–130CrossRefGoogle Scholar
  25. Hatje V, Apte SC, Hales LT, Birch GF (2003) Dissolved trace metal distributions in Port Jackson estuary (Sydney Harbour). Aust Mar Pollut Bull 46:719–730CrossRefGoogle Scholar
  26. Hierro A, Bolivar JP, Vaca F, Borrego J (2012) Behavior of natural radionuclides in surficial sediments from an estuary impacted by acid mine discharge and industrial effluents in southwest Spain. J Environ Radioact 110:13–23CrossRefGoogle Scholar
  27. Hierro A, Martín JE, Olías M, García C, Bolivar JP (2013a) Uranium behavior during a tidal cycle in an estuarine system affected by acid mine drainage (AMD). Chem Geol 342:110–118CrossRefGoogle Scholar
  28. Hierro A, Martín JE, Olías M, Vaca F , Bolivar JP (2013b) Uranium behaviour in an estuary polluted by mining and industrial effluents: the Ría of Huelva (SW of Spain). Water Res. doi: 10.1016/j.watres.2013.07.044
  29. Howard AG, Apte SC, Comber SDW, Morris RJ (1988) Biogeochemical control of the summer distribution and speciation of arsenic in the Tamar Estuary. Estuar Coast Shelf Sci 27:427–443CrossRefGoogle Scholar
  30. Kitts HJ, Milward GE, Morris AW, Ebdon L (1994) Arsenic biogeochemistry in the Humber Estuary. Estuar Coast Shelf Sci 39:157–172CrossRefGoogle Scholar
  31. Leistel JM, Marcoux E, Thieblemont D, Quesada C, Sánchez A, Almodóvar GR, Pascual E, Sáez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt, Review and preface to the Thematic Issue. Miner Deposita 33:2–30CrossRefGoogle Scholar
  32. Liang Y, Wong MH (2003) Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve, Hong Kong. Chemosphere 52:1647–1658CrossRefGoogle Scholar
  33. Liu YP, Millward GE, Harris JRW (1998) Modelling the distributions of dissolved Zn and Ni in the Tamar estuary using hydrodynamics coupled with chemical kinetics. Estuar Coast Shelf Sci 47:535–546CrossRefGoogle Scholar
  34. López-González N, Borrego J, Ruiz F, Carro B, Lozano-Soria O, Abad M (2006) Geochemical variations in estuarine sediments: provenance and environmental changes (Southern Spain). Estuar Coast Shelf Sci 67:313–320CrossRefGoogle Scholar
  35. Martínez-Aguirre A, García-León M (1994) The distribution of U, Th and 226Ra derived from the phosphate fertilizer industries on an estuarine system in Southwest Spain. J Environ Radioact 22:155–177CrossRefGoogle Scholar
  36. Masson M, Schäfer J, Blanc G, Dabrin A, Castelle S, Lavaux G (2009) Behavior of arsenic and antimony in the surface freshwater reaches of a highly turbid estuary, the Gironde Estuary. France Appl Geochem 24(9):1747–1756CrossRefGoogle Scholar
  37. Morris AW, Bale AJ, Howland RJ, Millward GE, Ackroyd DR, Loring DH, Rantala RTT (1986) Sediment mobility and its contribution to trace metal cycling andretention in a macrotidal estuary. Water Sci Technol 18:111–119Google Scholar
  38. Mosley LM, Hunter KA, Ducker WA (2003) Forces between colloid particles in natural waters. Environ Sci Technol 37:3303–3308CrossRefGoogle Scholar
  39. Mosley LM, Husheer SLG, Hunter KA (2004) Spectrophotometric pH measurement in estuaries using thymol blue and m-cresol purple. Mar Chem 91(1–4):175–186CrossRefGoogle Scholar
  40. Nelson CH, Lamothe PJ (1993) Heavy metals anomalies in the Tinto and Odiel River and estuary system, Spain. Estuaries 16(3A):496–511CrossRefGoogle Scholar
  41. Nieto JM, Sarmiento AM, Olías M, Cánovas CR, Riba I, Kalman J, Ángel T (2007) Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environ Int 33:445–455CrossRefGoogle Scholar
  42. Nieto JM, Sarmiento AM, Cánovas CR, Olías M, Ayora C (2013) Acid mine drainage in the Iberian Pyrite Belt: 1 Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers. Environ Sci Pollut Res. doi: 10.1007/s11356-013-1634-9 Google Scholar
  43. Nordstrom DK, Wilde FD (1998) Reduction-oxidation potential (electrode method). National field manual for the collection of water quality data. US Geological Survey techniques of water-resources investigations, book 9, chapter 6.5Google Scholar
  44. Olías M, Cerón JC, Moral F, Ruiz F (2006) Water quality of the Guadiamar River after the Aznalcóllar spill (SW Spain). Chemosphere 62:213–225CrossRefGoogle Scholar
  45. Olías M, Sarmiento AM, Vega R, Cánovas CR, Galván L, Nieto JM (2012) Elementos traza en aguas superficiales de las cuencas de los ríos Tinto y Odiel no afectadas por drenaje ácido de minas. SIAGA 2012. Cádiz, 1–3 October 2012Google Scholar
  46. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations, USGS Water-Resources Investigations Report 99-4259. USGS, Denver, USA, 312pGoogle Scholar
  47. Pérez-López R, Álvarez-Valero A, Nieto JM (2007) Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J Hazard Mater 148:745–750CrossRefGoogle Scholar
  48. Pérez-López R, Nieto JM, López-Cascajosa MJ, Díaz-Blanco MJ, Sarmiento AM, Oliveira V, Sánchez-Rodas D (2011) Evaluation of heavy metals and arsenic speciation discharged by the industrial activity on the Tinto–Odiel estuary, SW Spain. Mar Pollut Bull 62:405–411CrossRefGoogle Scholar
  49. Ruiz F (2001) Trace metals in estuarine sediments of southwestern Spain. Mar Pollut Bull 42:481–489CrossRefGoogle Scholar
  50. Sáez R, Pascual E, Toscano M, Almodóvar GR (1999) The Iberian type of volcano–sedimentary massive sulphide deposits. Miner Deposita 34:549–570CrossRefGoogle Scholar
  51. Sáinz A, Grande JA, de la Torre M (2004) Characterisation of heavy metal discharge into the Ria of Huelva. Environ Int 30:557–566CrossRefGoogle Scholar
  52. Sánchez-España J, López E, Santofimia E, Osvaldo A, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356CrossRefGoogle Scholar
  53. Sánchez-Rodas D, Gómez-Ariza JL, Giráldez I, Velasco A, Morales E (2005) Arsenic speciation in river and estuarine waters from southwest Spain. Sci Total Environ 345:207–217CrossRefGoogle Scholar
  54. Sarmiento AM, Nieto JM, Olías M, Cánovas CR (2009a) Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain). Appl Geochem 24:697–714CrossRefGoogle Scholar
  55. Sarmiento AM, Nieto JM, Casiot C, Ebaz-Poulichet F, Egal M (2009b) Inorganic arsenic speciation at river basin scales: the Tinto and Odiel Rivers in the Iberian Pyrite Belt, SW Spain. Environ Pollut 157:1202–1209CrossRefGoogle Scholar
  56. Singer PC, Stumm W (1970) Acidic mine drainage: the rate determining step. Science 167:1121–1123CrossRefGoogle Scholar
  57. Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley, New YorkGoogle Scholar
  58. TRAGSATEC (2010) Environmental characterization and modeling of the phosphogypsum plants located at Huelva (Spain). Report of the Spanish Department of Environment (in Spanish)Google Scholar
  59. Turner A, Nimmo M, Thuresson KA (1998) Speciation and sorptive behaviour of nickel in an organic-rich estuary (Beaulieu, UK). Mar Chem 63:105–118CrossRefGoogle Scholar
  60. Van Geen A, Adkins JF, Boyle EA, Nelson CH, Palanques A (1997) A 120 yr record of widespread contamination from mining of the Iberian pyrite belt. Geology 25:291–294CrossRefGoogle Scholar
  61. Zhou JL, Liu YP, Abrahams PW (2003) Trace metal behaviour in the Conwy estuary, North Wales. Chemosphere 51:429–440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Hierro
    • 1
  • M. Olías
    • 2
    • 3
  • M. E. Ketterer
    • 4
  • F. Vaca
    • 1
  • J. Borrego
    • 5
  • C. R. Cánovas
    • 2
  • J. P. Bolivar
    • 1
    Email author
  1. 1.Department of Applied Physics, Facultad de Ciencias ExperimentalesUniversity of HuelvaHuelvaSpain
  2. 2.Department of Geodynamics and Paleontology, Facultad de Ciencias ExperimentalesUniversity of HuelvaHuelvaSpain
  3. 3.Department of Physical, Chemical and Natural SystemsUniversity Pablo de OlavideSevillaSpain
  4. 4.Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffUSA
  5. 5.Department of Geology, Facultad de Ciencias ExperimentalesUniversity of HuelvaHuelvaSpain

Personalised recommendations