Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 4, pp 2592–2602 | Cite as

Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy

  • Tatiana Simonetto Colla
  • Robson AndreazzaEmail author
  • Francielle Bücker
  • Marcela Moreira de Souza
  • Letícia Tramontini
  • Gerônimo Rodrigues Prado
  • Ana Paula Guedes Frazzon
  • Flávio Anastácio de Oliveira Camargo
  • Fátima Menezes Bento
Research Article

Abstract

This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.

Keywords

Biodegradation Successive bioaugmentation Biostimulation Microbial consortium 

References

  1. Aleer S, Adetutu EM, Makadia TH, Patil S, Ball AS (2011) Harnessing the hydrocarbon-degrading potential of contaminated soils for the bioremediation of waste engine oil. Water Air Soil Pollut 218:121–130CrossRefGoogle Scholar
  2. APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DCGoogle Scholar
  3. Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055CrossRefGoogle Scholar
  4. Bissani CA, Gianello C, Camargo FAO, Tedesco MJ (2008) Fertilidade dos solos e manejo da adubação de culturas, 2nd edn. Gênesis, Porto AlegreGoogle Scholar
  5. Braddock JF, Catterall PH (1999) A simple method of enumerating gasoline- and diesel-degrading microorganisms. Bioremediation J 3:81–84CrossRefGoogle Scholar
  6. Caldwell DR (2000) Microbial physiology and metabolism. 2nd edn. Star, BelmontGoogle Scholar
  7. Ciric L, Philp JC, Whiteley AS (2010) Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiol Lett 303:116–122CrossRefGoogle Scholar
  8. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acid Res 37:D141–D145CrossRefGoogle Scholar
  9. Cyplik P, Schmidt M, Szulc A, Marecik R, Lisiecki P, Heipieper HJ, Owsianiak M, Vainshtein M, Chrzanowski L (2011) Relative quantitative PCR to assess bacterial community dynamics during biodegradation of diesel and biodiesel fuels under various aeration conditions. Bioresour Technolol 102:4347–4352CrossRefGoogle Scholar
  10. El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Cur Opin Microbiol 8:268–275CrossRefGoogle Scholar
  11. Ermakova IT, Kiseleva NI, Shushkova T, Zharikov M, Zharikov GA, Leontievsky AA (2010) Bioremediation of glyphosate-contaminated soils. App Microbiol Biotechnol 88:585–594CrossRefGoogle Scholar
  12. Evans FF, Rosado AS, Sebastián GV, Casella R, Machado PLOA, Holmström C, Kjelleberg S, Van Elsas JD, Seldin L (2004) Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol Ecol 49:295–305CrossRefGoogle Scholar
  13. Gargouri B, Karray F, Mhiri N, Aloui F, Sayadi S (2011) Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents. J Hazard Mater 189:427–434CrossRefGoogle Scholar
  14. Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Inter Biodeterior Biodegrad 54:61–67CrossRefGoogle Scholar
  15. Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. App Environ Microbiol 73:3272–3282CrossRefGoogle Scholar
  16. Horel A, Schiewer S (2009) Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Reg Sci Technol 58:113–119CrossRefGoogle Scholar
  17. Kaczorek E, Olszanowski A (2011) Uptake of hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) strains in the presence of surfactants: a cell surface modification. Water Air Soil Pollut 214:451–459CrossRefGoogle Scholar
  18. Knothe G (2010) Biodiesel and renewable diesel: a comparison. Progr Energy Combust 36:364–373CrossRefGoogle Scholar
  19. Lawniczak L, Kaczorek E, Olszanowski A (2011) The influence of cell immobilization by biofilm forming on the biodegradation capabilities of bacterial consortia. World J Microbiol Biotechnol 27:1183–1188CrossRefGoogle Scholar
  20. Lebkowska M, Zborowska E, Karwowska E, Miaskiewicz E, Muszynski A, Tabernacka A, Naumczyk J, Jeczalik M (2011) Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: field-scale processes in Poland. Ecol Eng 37:1895–1900CrossRefGoogle Scholar
  21. Li H, Zhang Y, Kravchenko I, Xu H, Zhang CG (2007) Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: a laboratory experiment. J Environ Sci 19:1003–1013CrossRefGoogle Scholar
  22. Lin TC, Pan PT, Young CC, Chang JS, Chang TC, Cheng SS (2011) Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil. Environ Sci Pollut Res 18:1487–1496CrossRefGoogle Scholar
  23. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375CrossRefGoogle Scholar
  24. Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. App Environ Microbiol 67:1675–1681CrossRefGoogle Scholar
  25. Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. App Environ Microbiol 63:3367–3373Google Scholar
  26. Peltola R, Salkinoja-Salonen M, Pulkkinen J, Koivunen M, Turpeinen AR, Aarnio T, Romanschuk M (2006) Nitrification in polluted soil fertilized with fast- and slow-releasing nitrogen—a case study at a refinery land farming site. Environ Pollut 143:247–253CrossRefGoogle Scholar
  27. Reddy MV, Devi MP, Chandrasekhar K, Goud RK, Mohan SV (2011) Aerobic remediation of petroleum sludge through soil supplementation: microbial community analysis. J Hazard Mater 197:80–87CrossRefGoogle Scholar
  28. Ruberto L, Dias R, Lo Balbo A, Vazquez SC, Hernandez EA, Mac Cormack WP (2009) Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. J App Microbiol 106:1101–1110CrossRefGoogle Scholar
  29. Silva IS, Santos EC, Menezes CR, Faria AF, Franciscon E, Grossman M, Durrant LR (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675CrossRefGoogle Scholar
  30. Silva GS, Marques ELS, Dias JCT, Lobo IP, Gross E, Brendel M, Da Cruz RS, Rezende RP (2012) Biodegradability of soy biodiesel in microcosm experiments using soil from the Atlantic Rain Forest. App Soil Ecol 55:27–35CrossRefGoogle Scholar
  31. Taccari M, Milanovic V, Comitini F, Casucci C, Ciani M (2012) Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Inter Biodeterior Biodegrad 66:39–46CrossRefGoogle Scholar
  32. Tahhan RA, Abu Atieh RY (2009) Biodegradation of petroleum industry oily-sludge using Jordanian oil refinery contaminated soil. Inter Biodeterior Biodegrad 63:1054–1060CrossRefGoogle Scholar
  33. Tahhan RA, Ammari TG, Goussous SJ, Al-Shdaifat HI (2011) Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy. Inter Biodeterior Biodegrad 65:130–134CrossRefGoogle Scholar
  34. Tiwari JN, Reddy MMK, Patel DK, Jain SK, Murthy RC, Manickam N (2010) Isolation of pyrene degrading Achromobacter xylosoxidans and characterization of metabolic product. World J Microbiol Biotechnol 26:1727–1733CrossRefGoogle Scholar
  35. Tyagi M, Fonseca MMR, Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation process. Biodegradation 22:231–241CrossRefGoogle Scholar
  36. Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. App Environ Microbiol 71:7008–7018CrossRefGoogle Scholar
  37. Xu Y, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183:395–401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tatiana Simonetto Colla
    • 1
  • Robson Andreazza
    • 2
    Email author
  • Francielle Bücker
    • 1
  • Marcela Moreira de Souza
    • 1
  • Letícia Tramontini
    • 1
  • Gerônimo Rodrigues Prado
    • 1
  • Ana Paula Guedes Frazzon
    • 1
  • Flávio Anastácio de Oliveira Camargo
    • 3
  • Fátima Menezes Bento
    • 1
  1. 1.Department of MicrobiologyFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Center of EngineerFederal University of PelotasPelotasBrazil
  3. 3.Department of Soil, Laboratory of Soil MicrobiologyFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations