Skip to main content
Log in

Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones

  • Chemistry in a sustainable society
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Self-cleaning photocatalytic coatings for biocalcarenite stones, based on TiO2 nanoparticles obtained by sol–gel processes at different pH values and also adding gold particles, have been investigated. The selected test material is a biocalcarenite named “pietra di Lecce” (Lecce stone), outcropping in Southern Italy. Scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Raman investigations were carried out to characterize the TiO2 nanoparticles and coatings. Nanocrystalline anatase and, to a lesser extent, brookite phases are obtained. Photocatalytic activity of the TiO2 sols and of the coatings on “pietra di Lecce” was assessed under ultraviolet irradiation, monitoring methyl orange (MeO) dye degradation as a function of time. To evaluate the harmlessness of the treatment, colorimetric tests and water absorption by capillarity were performed. The results show good photodegradation rates for titania nanosols, particularly when putting in Au particles, whereas a satisfactory chromatic compatibility between the sol and the surface of the calcarenite is found only without Au addition.

Highlights

  • Sols of nanocrystalline titania at different pH values and with Au particles were prepared and characterized.

  • Satisfactory photodegradation of MeO by the sols in solution and on calcarenite-coated surfaces is obtained.

  • The addition of Au particles improves the photodegradation activity but gives poor chromatic results on “pietra di Lecce.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akpan UG, Hameed BH (2010) The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal A-Gen 375:1–11. doi:10.1016/j.apcata.2009.12.023

    Article  CAS  Google Scholar 

  • Alapi A, Sipas P, Ilisz I, Wittmann G, Ambrus Z, Kiricsi I, Mogyoròsi K, Dombi A (2006) Synthesis and characterization of titania photocatalysts: the influence of pretreatment on the activity. Appl Catal A-Gen 303:1–8. doi:10.1016/j.apcata.2006.01.026

    Article  CAS  Google Scholar 

  • Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239. doi:10.1021/jp9535506

    Article  CAS  Google Scholar 

  • Al-Quadawi S, Salman SR (2002) Photocatalytic degradation of methyl orange as a model compound. J Photoch Photobio A 148:161–168

    Article  Google Scholar 

  • Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis. J Phys Chem 99:9882–9885. doi:10.1021/j100024a033

    Article  CAS  Google Scholar 

  • Andriani GF, Walsh N (2003) Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. B Eng Geol Environ 62:77–84. doi:10.1007/s10064-002-0174-1

    CAS  Google Scholar 

  • Antonioli G, Fermi F, Oleari C, Reverberi R (2004) Spectrophotometric scanner for imaging of paintings and other works of art. In: Proceedings of the Second European Conference on Color in Graphics, Imaging and Vision, Aachen, Germany, pp 219–224

  • Anuradha TV, Ranganathan S (2007) Nanocrystalline TiO2 by three different synthetic approaches: a comparison. B Mater Sci 30:263–269. doi:10.1007/s12034-007-0046-1

    Article  CAS  Google Scholar 

  • Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquid- and gas-phase photocatalytic reactions. J Phys Chem C 111:13222–13231. doi:10.1021/jp0741096

    Article  CAS  Google Scholar 

  • Balenzano F, Moresi M, Tria A (1994) Significato paleogeografico della presenza di Glauconite nella “Pietra Leccese” (Calcarenite Miocenica del Salento). Mineral Petrography Acta 37:437–450

    CAS  Google Scholar 

  • Bergamonti L, Alfieri I, Lorenzi L, Montenero A, Predieri G, Barone G, Mazzoleni P, Pasquale S, Lottici PP (2013) Nanocrystalline TiO2 by sol–gel: characterization and photocatalytic activity on Modica and Comiso stones. Appl Surf Sci 282:155–173. doi:10.1016/j.apsusc.2013.05.095

    Article  Google Scholar 

  • Bersani D, Antonioli G, Lottici PP, Lopez T (1998a) Raman study of nanosized titania prepared by sol–gel route. J Non-Cryst Solids 234:175–181. doi:10.1016/S0022-3093(98)00489-X

    Article  Google Scholar 

  • Bersani D, Lottici PP, Ding XZ (1998b) Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl Phys Lett 72:73–75. doi:10.1063/1.120648

    Article  CAS  Google Scholar 

  • Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progr Mater Sci 56:1–108. doi:10.1016/j.pmatsci.2010.04.003

    Article  CAS  Google Scholar 

  • Bossio A, Foresi LM, Margiotta S, Mazzei R, Salvatorini G, Donia F (2006) Stratigrafia neogenico-quaternaria del settore nord-orientale della provincia di Lecce (con rilevamento geologico alla scala 1:25.000). Geol Rom 39:63–87

    Google Scholar 

  • Bugani S, Camaiti M, Morselli L, Van de Casteele E, Janssens K (2008) Investigating morphological changes in treated vs. untreated stone building materials by X-ray micro-CT. Anal Bioanal Chem 391:1343–1350. doi:10.1007/s00216-008-1946-7

    Article  CAS  Google Scholar 

  • Camaiti M, Bugani S, Bernardi E, Morselli L, Matteini M (2007) Effects of atmospheric NO x on biocalcarenite coated with different conservation products. Appl Geochem 22:1248–1254. doi:10.1016/j.apgeochem.2007.03.035

    Article  CAS  Google Scholar 

  • Colmenares JC, Aramendía MA, Marinas A, Marinas JM, Urbano JF (2006) Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl Catal A-Gen 306:120–127. doi:10.1016/j.apcata.2006.03.046

    Article  CAS  Google Scholar 

  • De Ferri L, Lottici PP, Lorenzi A, Montenero A, Salvioli-Mariani E (2011) Study of silica nanoparticles—polysiloxane hydrophobic treatments for stone-based monument protection. J Cult Herit 12:356–363. doi:10.1016/j.culher.2011.02.006

    Article  Google Scholar 

  • Djaoued Y, Brüning R, Bersani D, Lottici PP, Badilescu S (2004) Sol–gel nanocrystalline brookite-rich titania films. Mater Lett 58:2618–2622. doi:10.1016/j.matlet.2004.03.034

    Article  CAS  Google Scholar 

  • Dozzi MV, Prati L, Canton P, Selli E (2009) Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light. Phys Chem Chem Phys 11:7171–7180. doi:10.1039/B907317E

    Article  CAS  Google Scholar 

  • Folk RL (1962) Spectral subdivision of limestone types. In: Ham WE (ed) Classification of carbonate rocks—a symposium. Am Assoc Petr Geol Memoir 1:62–84

  • Fronteau G, Schneider-Thomachot C, Chopin E, Barbin V, Mouze D, Pascal A (2010) Black-crust growth and interaction with underlying limestone microfacies. Geol Soc Spec Publ 333:25–34. doi:10.1144/SP333.3

    Article  CAS  Google Scholar 

  • Golubović A, Šćepanović M, Kremenović A, Aškrabić S, Berec V, Dohćević-Mitrović Z, Popović ZV (2009) Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J Sol–gel Sci Technol 49:311–319

    Article  Google Scholar 

  • Grossi CM, Brimblecombe P (2007) Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings. Geol Soc Spec Publ 271:117–130. doi:10.1144/GSL.SP.2007.271.01.13

    Article  CAS  Google Scholar 

  • Kandiel TA, Robben L, Alkaim A, Bahnemann D (2013) Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem Photobiol Sci 12:602–609. doi:10.1039/c2pp25217a

    Article  CAS  Google Scholar 

  • Karapanagiotis I, Manoudis P (2012) Superhydrophobic surfaces. J Mech Behav Mater 21:21–32. doi:10.1515/jmbm.2012.0022

    CAS  Google Scholar 

  • Kawahara T, Konishi Y, Tada H, Tohge N, Nishi J, Ito S (2002) A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Edit 41:2811–2813. doi:10.1002/1521-3773(20020802)41:15<2811::AID-ANIE2811>3.0.CO;2-#

    Article  CAS  Google Scholar 

  • Kumar SR, Suresh C, Vasudevan KA, Suja NR, Mukundan P, Warrier KGK (1999) Phase transformation in sol–gel titania containing silica. Mater Lett 38:161–166

    Article  Google Scholar 

  • La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for Cultural Heritage. Prog Org Coat 74:186–191. doi:10.1016/j.porgcoat.2011.12.008

    Article  Google Scholar 

  • Licciulli A, Calia A, Lettieri M, Diso D, Masieri M, Franza S, Amadelli R, Casarano G (2011) Photocatalytic coating on limestone. J Sol–gel Sci Technol 60:437–444

    Article  CAS  Google Scholar 

  • Liu K, Jiang L (2012) Bio-inspired self-cleaning surfaces. Annu Rev Mater Res 42:231–263. doi:10.1146/annurev-matsci-070511-155046

    Article  CAS  Google Scholar 

  • Lottici PP, Bersani D, Braghini M, Montenero A (1993) Raman scattering characterization of gel-derived titania glass. J Mater Sci 28:177–183. doi:10.1007/BF00349049

    Article  CAS  Google Scholar 

  • Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Kolinkeová B, Panayiotou C (2009a) Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl Phys A 97:351–360. doi:10.1007/s00339-009-5233-z

    Article  CAS  Google Scholar 

  • Manoudis PN, Tsakalof A, Karapanagiotis I, Zuburtikudis I, Kolinkeová B, Panayiotou C (2009b) Fabrication of super-hydrophobic surfaces for enhanced stone protection. Surf Coat Tech 203:1322–1328. doi:10.1016/j.surfcoat.2008.10.041

    Article  CAS  Google Scholar 

  • Mazzei R, Margiotta S, Foresi LM, Riforgiato F, Salvatorini G (2009) Biostratigraphy and chronostratigraphy of the Miocene Pietra Leccese in the type area of Lecce (Apulia, southern Italy). Boll Soc Paleontol I 48:129–145

    Google Scholar 

  • Miliani C, Velo-Simpson ML, Scherer GW (2007) Particle-modified consolidants: a study on the effect of particles on sol–gel properties and consolidation effectiveness. J Cult Herit 8:1–6. doi:10.1016/j.culher.2006.10.002

    Article  Google Scholar 

  • Oakes J, Gratton P (1998) Kinetic investigations of the oxidation of methyl orange and substituted arylazonaphthol dyes by peracids in aqueous solution. J Chem Soc Perkin Trans 2:2563–2568. doi:10.1039/a807272h

    Article  Google Scholar 

  • Ohta N, Robertson AR (2005) Colorimetry: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

  • Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101:3746–3752. doi:10.1021/jp962702+

    Article  CAS  Google Scholar 

  • Ozawa T, Iwasaki M, Tada H, Akita T, Tanaka K, Ito S (2005) Low-temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity. J Colloid Interf Sci 281:510–513. doi:10.1016/j.jcis.2004.08.137

    Article  CAS  Google Scholar 

  • Panniello A, Curri ML, Diso D, Licciulli L, Locaputo V, Agostiano A, Comparelli R, Mascolo G (2012) Nanocrystalline TiO2 based films onto fibers for photocatalytic degradation of organic dye in aqueous solution. Appl Catal B Environ 121–122:190–197. doi:10.1016/j.apcatb.2012.03.019

    Article  Google Scholar 

  • Perez-Monserrat EM, Varas MJ, Fort R, de Buergo MA (2011) Assessment of different methods for cleaning the limestone facades of the former workers hospital of Madrid, Spain. Stud Conserv 56:298–313. doi:10.1179/204705811X13159282692969

    Article  CAS  Google Scholar 

  • Peruzzi R, Poli T, Toniolo L (2003) The experimental test for the evaluation of protective treatments: a critical survey of the “capillary absorption index”. J Cult Her 4:251–254. doi:10.1016/S1296-2074

    Article  Google Scholar 

  • Pinho L, Mosquera MJ (2011) Titania–silica nanocomposite photocatalysts with application in stone self-cleaning. J Phys Chem C 115:22851–22862. doi:10.1021/jp2074623

    Article  CAS  Google Scholar 

  • Pinho L, Mosquera MJ (2013) Photocatalytic activity of TiO2–SiO2 nanocomposites applied to buildings: influence of particle size and loading. Appl Catal B Environ 134–135:205–221. doi:10.1016/j.apcatb.2103.01.021

    Article  Google Scholar 

  • Pinho L, Elhaddad F, Facio DS, Mosquera MJ (2013) A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci 275:389–396. doi:10.1016/j.apsusc.2012.10.142

    Article  CAS  Google Scholar 

  • Primo A, Corma A, Garcia H (2010) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910. doi:10.1039/c0cp00917b

    Article  Google Scholar 

  • Quagliarini E, Bondioli F, Goffredo G, Cordoni C, Munafò P (2012a) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57. doi:10.1016/j.conbuildmat.2012.07.006

    Article  Google Scholar 

  • Quagliarini E, Bondioli F, Goffredo G, Licciulli A, Munafò P (2012b) Self-cleaning materials on Architectural Heritage: compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. J Cult Herit 13:204–209. doi:10.1016/j.culher.2012.02.006

    Article  Google Scholar 

  • Rahal R, Wankhade A, Cha D, Fihri A, Ould-Chikh S, Patil U, Polshettiwar V (2012) Synthesis of hierarchical anatase TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. RSC Adv 2:7048–7052. doi:10.1039/c2ra21104a

    Article  CAS  Google Scholar 

  • Smitha VS, Manjumol KA, Baiju KV, Ghosh S, Perumal P, Warrier KGK (2010) Sol–gel route to synthesize titania-silica nano precursors for photoactive particulates and coatings. J Sol–gel Sci Technol 54:203–211

    Article  CAS  Google Scholar 

  • Tahiri H, Ichou YA, Herrmann JM (1998) Photocatalytic degradation of chlorobenzoic isomers in aqueous suspensions of neat and modified titania. J Photoch Photobio A 114:219–226. doi:10.1016/S1010-6030(98)00227-5

    Article  CAS  Google Scholar 

  • Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C (2007) Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit 8:69–72. doi:10.1016/j.culher.2006.06.007

    Article  Google Scholar 

  • UNI 11259:2008. Determination of the hydraulic binders—rhodamine B test method. UNI Ente Nazionale Italiano di Unificazione; 2008

  • UNI EN 10921:2001. Beni culturali—Materiali lapidei naturali ed artificiali—Prodotti idrorepellenti—Applicazione su provini e determinazione in laboratorio delle loro caratteristiche. UNI Ente Nazionale Italiano di Unificazione; 2001

  • UNI EN 15801:2010. Conservation of cultural property—test methods—determination of water absorption by capillarity. UNI Ente Nazionale Italiano di Unificazione; 2010

  • UNI EN 15886:2010. Conservation of cultural property—test methods—colour measurement of surfaces. UNI Ente Nazionale Italiano di Unificazione; 2010

  • Vasanelli E, Sileo M, Calia A, Aiello MA (2013) Non-destructive techniques to assess mechanical and physical properties of soft calcarenitic stones. Procedia Chem 8:35–44. doi:10.1016/j.proche.2013.03.006

    Article  Google Scholar 

  • Vivero-Escoto JL, Chiang YD, Wu KCW, Yamauchi Y (2012) Recent progress in mesoporous titania materials: adjusting morphology for innovative applications. Sci Technol Adv Mater 13:013003. doi:10.1088/1468-6996/13/1/013003

    Article  Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Article  Google Scholar 

  • Yogi C, Kojima K, Hashishin T, Wada N, Inada Y, Della Gaspera E, Bersani M, Martucci A, Liu L, Sham TK (2011) Size effect of Au nanoparticles on TiO2 crystalline phase of nanocomposite thin films and their photocatalytic properties. J Phys Chem C 115:6554–6560. doi:10.1021/jp110581J

    Article  CAS  Google Scholar 

  • Zaleska A (2008) Doped-TiO2: a review. Recent Patents Eng 2:157–164

    Article  CAS  Google Scholar 

  • Zhang HZ, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487. doi:10.1021/jp000499j

    Article  CAS  Google Scholar 

  • Zielinska B, Grzechulska J, Grzmil B, Morawski AW (2001) Photocatalytic degradation of reactive Black 5: a comparison between TiO2-Tytanpol A11 and TiO2-Degussa P25 photocatalysts. Appl Catal B Environ 35:L1–L7. doi:10.1016/S0926-3373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Maurizio Masieri (IBAM, Lecce, Italy) is acknowledged for the ESEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bergamonti.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergamonti, L., Alfieri, I., Franzò, M. et al. Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones. Environ Sci Pollut Res 21, 13264–13277 (2014). https://doi.org/10.1007/s11356-013-2136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2136-5

Keywords

Navigation