Environmental Science and Pollution Research

, Volume 21, Issue 23, pp 13264–13277 | Cite as

Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones

  • Laura Bergamonti
  • Ilaria Alfieri
  • Marco Franzò
  • Andrea Lorenzi
  • Angelo Montenero
  • Giovanni Predieri
  • Marina Raganato
  • Angela Calia
  • Laura Lazzarini
  • Danilo Bersani
  • Pier Paolo Lottici
Chemistry in a sustainable society

Abstract

Self-cleaning photocatalytic coatings for biocalcarenite stones, based on TiO2 nanoparticles obtained by sol–gel processes at different pH values and also adding gold particles, have been investigated. The selected test material is a biocalcarenite named “pietra di Lecce” (Lecce stone), outcropping in Southern Italy. Scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Raman investigations were carried out to characterize the TiO2 nanoparticles and coatings. Nanocrystalline anatase and, to a lesser extent, brookite phases are obtained. Photocatalytic activity of the TiO2 sols and of the coatings on “pietra di Lecce” was assessed under ultraviolet irradiation, monitoring methyl orange (MeO) dye degradation as a function of time. To evaluate the harmlessness of the treatment, colorimetric tests and water absorption by capillarity were performed. The results show good photodegradation rates for titania nanosols, particularly when putting in Au particles, whereas a satisfactory chromatic compatibility between the sol and the surface of the calcarenite is found only without Au addition.

Highlights

  • Sols of nanocrystalline titania at different pH values and with Au particles were prepared and characterized.

  • Satisfactory photodegradation of MeO by the sols in solution and on calcarenite-coated surfaces is obtained.

  • The addition of Au particles improves the photodegradation activity but gives poor chromatic results on “pietra di Lecce.”

Keywords

Sol–gel titania Nanocrystalline TiO2 Biocalcarenites Self-cleaning coating Photocatalysis Anatase Brookite 

References

  1. Akpan UG, Hameed BH (2010) The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal A-Gen 375:1–11. doi:10.1016/j.apcata.2009.12.023 CrossRefGoogle Scholar
  2. Alapi A, Sipas P, Ilisz I, Wittmann G, Ambrus Z, Kiricsi I, Mogyoròsi K, Dombi A (2006) Synthesis and characterization of titania photocatalysts: the influence of pretreatment on the activity. Appl Catal A-Gen 303:1–8. doi:10.1016/j.apcata.2006.01.026 CrossRefGoogle Scholar
  3. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239. doi:10.1021/jp9535506 CrossRefGoogle Scholar
  4. Al-Quadawi S, Salman SR (2002) Photocatalytic degradation of methyl orange as a model compound. J Photoch Photobio A 148:161–168CrossRefGoogle Scholar
  5. Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis. J Phys Chem 99:9882–9885. doi:10.1021/j100024a033 CrossRefGoogle Scholar
  6. Andriani GF, Walsh N (2003) Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. B Eng Geol Environ 62:77–84. doi:10.1007/s10064-002-0174-1 Google Scholar
  7. Antonioli G, Fermi F, Oleari C, Reverberi R (2004) Spectrophotometric scanner for imaging of paintings and other works of art. In: Proceedings of the Second European Conference on Color in Graphics, Imaging and Vision, Aachen, Germany, pp 219–224Google Scholar
  8. Anuradha TV, Ranganathan S (2007) Nanocrystalline TiO2 by three different synthetic approaches: a comparison. B Mater Sci 30:263–269. doi:10.1007/s12034-007-0046-1 CrossRefGoogle Scholar
  9. Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquid- and gas-phase photocatalytic reactions. J Phys Chem C 111:13222–13231. doi:10.1021/jp0741096 CrossRefGoogle Scholar
  10. Balenzano F, Moresi M, Tria A (1994) Significato paleogeografico della presenza di Glauconite nella “Pietra Leccese” (Calcarenite Miocenica del Salento). Mineral Petrography Acta 37:437–450Google Scholar
  11. Bergamonti L, Alfieri I, Lorenzi L, Montenero A, Predieri G, Barone G, Mazzoleni P, Pasquale S, Lottici PP (2013) Nanocrystalline TiO2 by sol–gel: characterization and photocatalytic activity on Modica and Comiso stones. Appl Surf Sci 282:155–173. doi:10.1016/j.apsusc.2013.05.095 CrossRefGoogle Scholar
  12. Bersani D, Antonioli G, Lottici PP, Lopez T (1998a) Raman study of nanosized titania prepared by sol–gel route. J Non-Cryst Solids 234:175–181. doi:10.1016/S0022-3093(98)00489-X CrossRefGoogle Scholar
  13. Bersani D, Lottici PP, Ding XZ (1998b) Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl Phys Lett 72:73–75. doi:10.1063/1.120648 CrossRefGoogle Scholar
  14. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progr Mater Sci 56:1–108. doi:10.1016/j.pmatsci.2010.04.003 CrossRefGoogle Scholar
  15. Bossio A, Foresi LM, Margiotta S, Mazzei R, Salvatorini G, Donia F (2006) Stratigrafia neogenico-quaternaria del settore nord-orientale della provincia di Lecce (con rilevamento geologico alla scala 1:25.000). Geol Rom 39:63–87Google Scholar
  16. Bugani S, Camaiti M, Morselli L, Van de Casteele E, Janssens K (2008) Investigating morphological changes in treated vs. untreated stone building materials by X-ray micro-CT. Anal Bioanal Chem 391:1343–1350. doi:10.1007/s00216-008-1946-7 CrossRefGoogle Scholar
  17. Camaiti M, Bugani S, Bernardi E, Morselli L, Matteini M (2007) Effects of atmospheric NOx on biocalcarenite coated with different conservation products. Appl Geochem 22:1248–1254. doi:10.1016/j.apgeochem.2007.03.035 CrossRefGoogle Scholar
  18. Colmenares JC, Aramendía MA, Marinas A, Marinas JM, Urbano JF (2006) Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl Catal A-Gen 306:120–127. doi:10.1016/j.apcata.2006.03.046 CrossRefGoogle Scholar
  19. De Ferri L, Lottici PP, Lorenzi A, Montenero A, Salvioli-Mariani E (2011) Study of silica nanoparticles—polysiloxane hydrophobic treatments for stone-based monument protection. J Cult Herit 12:356–363. doi:10.1016/j.culher.2011.02.006 CrossRefGoogle Scholar
  20. Djaoued Y, Brüning R, Bersani D, Lottici PP, Badilescu S (2004) Sol–gel nanocrystalline brookite-rich titania films. Mater Lett 58:2618–2622. doi:10.1016/j.matlet.2004.03.034 CrossRefGoogle Scholar
  21. Dozzi MV, Prati L, Canton P, Selli E (2009) Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light. Phys Chem Chem Phys 11:7171–7180. doi:10.1039/B907317E CrossRefGoogle Scholar
  22. Folk RL (1962) Spectral subdivision of limestone types. In: Ham WE (ed) Classification of carbonate rocks—a symposium. Am Assoc Petr Geol Memoir 1:62–84Google Scholar
  23. Fronteau G, Schneider-Thomachot C, Chopin E, Barbin V, Mouze D, Pascal A (2010) Black-crust growth and interaction with underlying limestone microfacies. Geol Soc Spec Publ 333:25–34. doi:10.1144/SP333.3 CrossRefGoogle Scholar
  24. Golubović A, Šćepanović M, Kremenović A, Aškrabić S, Berec V, Dohćević-Mitrović Z, Popović ZV (2009) Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J Sol–gel Sci Technol 49:311–319CrossRefGoogle Scholar
  25. Grossi CM, Brimblecombe P (2007) Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings. Geol Soc Spec Publ 271:117–130. doi:10.1144/GSL.SP.2007.271.01.13 CrossRefGoogle Scholar
  26. Kandiel TA, Robben L, Alkaim A, Bahnemann D (2013) Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem Photobiol Sci 12:602–609. doi:10.1039/c2pp25217a CrossRefGoogle Scholar
  27. Karapanagiotis I, Manoudis P (2012) Superhydrophobic surfaces. J Mech Behav Mater 21:21–32. doi:10.1515/jmbm.2012.0022 Google Scholar
  28. Kawahara T, Konishi Y, Tada H, Tohge N, Nishi J, Ito S (2002) A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Edit 41:2811–2813. doi:10.1002/1521-3773(20020802)41:15<2811::AID-ANIE2811>3.0.CO;2-# CrossRefGoogle Scholar
  29. Kumar SR, Suresh C, Vasudevan KA, Suja NR, Mukundan P, Warrier KGK (1999) Phase transformation in sol–gel titania containing silica. Mater Lett 38:161–166CrossRefGoogle Scholar
  30. La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for Cultural Heritage. Prog Org Coat 74:186–191. doi:10.1016/j.porgcoat.2011.12.008 CrossRefGoogle Scholar
  31. Licciulli A, Calia A, Lettieri M, Diso D, Masieri M, Franza S, Amadelli R, Casarano G (2011) Photocatalytic coating on limestone. J Sol–gel Sci Technol 60:437–444CrossRefGoogle Scholar
  32. Liu K, Jiang L (2012) Bio-inspired self-cleaning surfaces. Annu Rev Mater Res 42:231–263. doi:10.1146/annurev-matsci-070511-155046 CrossRefGoogle Scholar
  33. Lottici PP, Bersani D, Braghini M, Montenero A (1993) Raman scattering characterization of gel-derived titania glass. J Mater Sci 28:177–183. doi:10.1007/BF00349049 CrossRefGoogle Scholar
  34. Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Kolinkeová B, Panayiotou C (2009a) Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl Phys A 97:351–360. doi:10.1007/s00339-009-5233-z CrossRefGoogle Scholar
  35. Manoudis PN, Tsakalof A, Karapanagiotis I, Zuburtikudis I, Kolinkeová B, Panayiotou C (2009b) Fabrication of super-hydrophobic surfaces for enhanced stone protection. Surf Coat Tech 203:1322–1328. doi:10.1016/j.surfcoat.2008.10.041 CrossRefGoogle Scholar
  36. Mazzei R, Margiotta S, Foresi LM, Riforgiato F, Salvatorini G (2009) Biostratigraphy and chronostratigraphy of the Miocene Pietra Leccese in the type area of Lecce (Apulia, southern Italy). Boll Soc Paleontol I 48:129–145Google Scholar
  37. Miliani C, Velo-Simpson ML, Scherer GW (2007) Particle-modified consolidants: a study on the effect of particles on sol–gel properties and consolidation effectiveness. J Cult Herit 8:1–6. doi:10.1016/j.culher.2006.10.002 CrossRefGoogle Scholar
  38. Oakes J, Gratton P (1998) Kinetic investigations of the oxidation of methyl orange and substituted arylazonaphthol dyes by peracids in aqueous solution. J Chem Soc Perkin Trans 2:2563–2568. doi:10.1039/a807272h CrossRefGoogle Scholar
  39. Ohta N, Robertson AR (2005) Colorimetry: fundamentals and applications. Wiley, New YorkCrossRefGoogle Scholar
  40. Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101:3746–3752. doi:10.1021/jp962702+ CrossRefGoogle Scholar
  41. Ozawa T, Iwasaki M, Tada H, Akita T, Tanaka K, Ito S (2005) Low-temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity. J Colloid Interf Sci 281:510–513. doi:10.1016/j.jcis.2004.08.137 CrossRefGoogle Scholar
  42. Panniello A, Curri ML, Diso D, Licciulli L, Locaputo V, Agostiano A, Comparelli R, Mascolo G (2012) Nanocrystalline TiO2 based films onto fibers for photocatalytic degradation of organic dye in aqueous solution. Appl Catal B Environ 121–122:190–197. doi:10.1016/j.apcatb.2012.03.019 CrossRefGoogle Scholar
  43. Perez-Monserrat EM, Varas MJ, Fort R, de Buergo MA (2011) Assessment of different methods for cleaning the limestone facades of the former workers hospital of Madrid, Spain. Stud Conserv 56:298–313. doi:10.1179/204705811X13159282692969 CrossRefGoogle Scholar
  44. Peruzzi R, Poli T, Toniolo L (2003) The experimental test for the evaluation of protective treatments: a critical survey of the “capillary absorption index”. J Cult Her 4:251–254. doi:10.1016/S1296-2074 CrossRefGoogle Scholar
  45. Pinho L, Mosquera MJ (2011) Titania–silica nanocomposite photocatalysts with application in stone self-cleaning. J Phys Chem C 115:22851–22862. doi:10.1021/jp2074623 CrossRefGoogle Scholar
  46. Pinho L, Mosquera MJ (2013) Photocatalytic activity of TiO2–SiO2 nanocomposites applied to buildings: influence of particle size and loading. Appl Catal B Environ 134–135:205–221. doi:10.1016/j.apcatb.2103.01.021 CrossRefGoogle Scholar
  47. Pinho L, Elhaddad F, Facio DS, Mosquera MJ (2013) A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci 275:389–396. doi:10.1016/j.apsusc.2012.10.142 CrossRefGoogle Scholar
  48. Primo A, Corma A, Garcia H (2010) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910. doi:10.1039/c0cp00917b CrossRefGoogle Scholar
  49. Quagliarini E, Bondioli F, Goffredo G, Cordoni C, Munafò P (2012a) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57. doi:10.1016/j.conbuildmat.2012.07.006 CrossRefGoogle Scholar
  50. Quagliarini E, Bondioli F, Goffredo G, Licciulli A, Munafò P (2012b) Self-cleaning materials on Architectural Heritage: compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. J Cult Herit 13:204–209. doi:10.1016/j.culher.2012.02.006 CrossRefGoogle Scholar
  51. Rahal R, Wankhade A, Cha D, Fihri A, Ould-Chikh S, Patil U, Polshettiwar V (2012) Synthesis of hierarchical anatase TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. RSC Adv 2:7048–7052. doi:10.1039/c2ra21104a CrossRefGoogle Scholar
  52. Smitha VS, Manjumol KA, Baiju KV, Ghosh S, Perumal P, Warrier KGK (2010) Sol–gel route to synthesize titania-silica nano precursors for photoactive particulates and coatings. J Sol–gel Sci Technol 54:203–211CrossRefGoogle Scholar
  53. Tahiri H, Ichou YA, Herrmann JM (1998) Photocatalytic degradation of chlorobenzoic isomers in aqueous suspensions of neat and modified titania. J Photoch Photobio A 114:219–226. doi:10.1016/S1010-6030(98)00227-5 CrossRefGoogle Scholar
  54. Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C (2007) Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit 8:69–72. doi:10.1016/j.culher.2006.06.007 CrossRefGoogle Scholar
  55. UNI 11259:2008. Determination of the hydraulic binders—rhodamine B test method. UNI Ente Nazionale Italiano di Unificazione; 2008Google Scholar
  56. UNI EN 10921:2001. Beni culturali—Materiali lapidei naturali ed artificiali—Prodotti idrorepellenti—Applicazione su provini e determinazione in laboratorio delle loro caratteristiche. UNI Ente Nazionale Italiano di Unificazione; 2001Google Scholar
  57. UNI EN 15801:2010. Conservation of cultural property—test methods—determination of water absorption by capillarity. UNI Ente Nazionale Italiano di Unificazione; 2010Google Scholar
  58. UNI EN 15886:2010. Conservation of cultural property—test methods—colour measurement of surfaces. UNI Ente Nazionale Italiano di Unificazione; 2010Google Scholar
  59. Vasanelli E, Sileo M, Calia A, Aiello MA (2013) Non-destructive techniques to assess mechanical and physical properties of soft calcarenitic stones. Procedia Chem 8:35–44. doi:10.1016/j.proche.2013.03.006 CrossRefGoogle Scholar
  60. Vivero-Escoto JL, Chiang YD, Wu KCW, Yamauchi Y (2012) Recent progress in mesoporous titania materials: adjusting morphology for innovative applications. Sci Technol Adv Mater 13:013003. doi:10.1088/1468-6996/13/1/013003 CrossRefGoogle Scholar
  61. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRefGoogle Scholar
  62. Yogi C, Kojima K, Hashishin T, Wada N, Inada Y, Della Gaspera E, Bersani M, Martucci A, Liu L, Sham TK (2011) Size effect of Au nanoparticles on TiO2 crystalline phase of nanocomposite thin films and their photocatalytic properties. J Phys Chem C 115:6554–6560. doi:10.1021/jp110581J CrossRefGoogle Scholar
  63. Zaleska A (2008) Doped-TiO2: a review. Recent Patents Eng 2:157–164CrossRefGoogle Scholar
  64. Zhang HZ, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487. doi:10.1021/jp000499j CrossRefGoogle Scholar
  65. Zielinska B, Grzechulska J, Grzmil B, Morawski AW (2001) Photocatalytic degradation of reactive Black 5: a comparison between TiO2-Tytanpol A11 and TiO2-Degussa P25 photocatalysts. Appl Catal B Environ 35:L1–L7. doi:10.1016/S0926-3373 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laura Bergamonti
    • 1
  • Ilaria Alfieri
    • 1
  • Marco Franzò
    • 1
  • Andrea Lorenzi
    • 1
  • Angelo Montenero
    • 1
  • Giovanni Predieri
    • 1
  • Marina Raganato
    • 1
  • Angela Calia
    • 2
  • Laura Lazzarini
    • 3
  • Danilo Bersani
    • 4
  • Pier Paolo Lottici
    • 4
  1. 1.Department of ChemistryUniversity of ParmaParmaItaly
  2. 2.Institute for Archaeological and Monumental Heritage (CNR-IBAM)LecceItaly
  3. 3.IMEM-CNRParmaItaly
  4. 4.Department of Physics and Earth SciencesUniversity of ParmaParmaItaly

Personalised recommendations