Skip to main content

Advertisement

Log in

Characteristics of water-soluble inorganic ions in PM2.5 and PM2.5–10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2∼50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldabe J, Elustondo D, Santamaría C, Lasheras E, Pandolfi M, Alastuey A, Querol X, Santamaría JM (2011) Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos Res 1–2:191–205

    Article  Google Scholar 

  • Andreae MO (1983) Soot carbon and excess fine potassium: long range transport of combustion-derived aerosols. Science 220:1148–1151

    Article  CAS  Google Scholar 

  • Arimoto R, Duce RA, Savoie DL, Prospero JM, Talbot R, Cullen JD, Tomza U, Lewis NF, Ray BJ (1996) Relationships among aerosol constituents from Asia and the North Pacific during Pem-West. J Geophys Res 101:2011–2023

    Article  CAS  Google Scholar 

  • Bergin MH, Cass GR, Xu J, Fang C, Zeng LM, Yu T, Salmon LG, Kiang CS, Tang XY, Zhang YH, Chameides WL (2001) Aerosol radiative, physical, and chemical properties in Beijing during June 1999. J Geophys Res 106:17969–17980

    Article  CAS  Google Scholar 

  • Chan CK, Yao XH (2008) Air pollution in mega cities in China. Atmos Environ 42:1–42

    Article  CAS  Google Scholar 

  • Chan YC, Simpson RW, Mctainsh GH, Vowles PD, Cohen DD, Bailey GM (1999) Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmos Environ 33:3237–3250

    Article  CAS  Google Scholar 

  • Cheng MD, Gao N, Hopke PK (1996) Source apportionment study of nitrogen species measured in southern California in 1987. J Environ Eng 122:183–190

    Article  CAS  Google Scholar 

  • Chow JC, Fujita EM, Watson JG, Lu Z, Lawson DR, Ashbaugh LL (1994) Evaluation of filter-based aerosol measurements during the 1987 Southern California Air Quality Study. Environ Monit Assess 30:49–80

    Google Scholar 

  • Colbeck I, Harrison RM (1984) Ozone–secondary aerosol–visibility relationships in north-west England. Sci Total Environ 34:87–100

    Article  CAS  Google Scholar 

  • Dai W, Gao JQ, Cao G, Ouyang F (2013) Chemical composition and source identification of PM2.5 in the suburb of Shenzhen, China. Atmos Res 122:391–400

    Article  CAS  Google Scholar 

  • Deng LQ, Li H, Cai FH, Lun XX, Chen YZ, Wang FW, Ni RX (2010) Pollution characteristics of the atmospheric fine particles and related gaseous pollutants in the northeastern urban area of Beijing. China atmospheric environmental science and technology conference, 17th, Shanghai, China, 15–19 October, 14–15

  • Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101:22869–22889

    Article  CAS  Google Scholar 

  • Gao XM, Yang LX, Cheng SH, Gao R, Zhou Y, Xue LK, Shou YP, Wang J, Wang XF, Nie W, Xu PJ, Wang WX (2011) Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: temporal variations and source apportionments. Atmos Environ 45:6048–6056

    Article  CAS  Google Scholar 

  • Gu JX, Bai ZP, Wu LP, Liu AX, Dong HY, Xie YY (2011) Chemical composition of PM2.5 during winter in Tianjin, China. Particuology 9:215–221

    Article  CAS  Google Scholar 

  • Harrison RM, Deacon AR, Jones MR, Appleby RS (1997) Sources and process affecting concentrations of PM10 and PM2.5 particulate matters in Birmingham (UK). Atmos Environ 31:4103–4117

    Article  CAS  Google Scholar 

  • Hu M, Zhang J, Wu ZJ (2005) Chemical compositions of precipitation and scavenging of particles in Beijing. Sci China Ser B Chem 3:265–272

    Article  Google Scholar 

  • Jeong JI, Park RJ (2013) Effects of the meteorological variability on regional air quality in East Asia. Atmos Environ 69:46–55

    Article  CAS  Google Scholar 

  • Jennings SG (1993) Aerosol Effects on Climate. The University of Arizona, Tucson

    Google Scholar 

  • Jonson JE, Semb A, Barrett K, Grini A, Tarrason L (2000) On the distribution of sea salt and sodium nitrate particles in Europe. Transport and Chemical Transportation in the Troposphere, Proceedings of the EUROTRAC Symposium, 6th, Gaimisch-Partenkirchen, Germany, 27–31 March 2000, 695–699

  • Kalinic N, Vladimira V, Janko H, Živana L (1997) Fluoride mass concentration in the air at different distances from an aluminum factory. Environ Res Forum 7–8:253–257

    Google Scholar 

  • Kaneyasu N, Yoshikado H, Mizuno T, Sakamoto K, Soufuku M (1999) Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in Kanto Plain of Japan. Atmos Environ 33:1745–1756

    Article  CAS  Google Scholar 

  • Kennish MJ (1994) Practical Handbook of Marine Science. CRC, Boca Raton

    Google Scholar 

  • Khoder MI (2002) Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen nitric acid in an urban area. Chemosphere 49:675–684

    Article  CAS  Google Scholar 

  • Kim BM, Teffera S, Zeldin MD (2000) Characterization of PM2.5 and PM10 in the south coast air basin of southern California. Part 1-Spatial variations. J Air Waste Manag Assoc 50:2034–2044

    Article  CAS  Google Scholar 

  • Kleeman MJ, Schauer JJ, Cass GR (2001) Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ Sci Technol 34:1132–1142

    Article  Google Scholar 

  • Lai SC, Zou SC, Cao JJ, Lee SC, Ho KF (2007) Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, South China. J Environ Sci 19:939–947

    Article  CAS  Google Scholar 

  • Ma YL, Tan JH, Yang FM, He KB, Yu YC, Wang JW (2010) Characteristics of atmospheric fine particles and its chemical compositions in Guangzhou-Foshan area. China atmospheric environmental science and technology conference, 17th, Shanghai, China, 15–19 October, 38

  • Malm WC, Hand JL (2007) An examination of the physical and optical properties of aerosols collected in the IMPROVE program. Atmos Environ 41:3407–3427

    Article  CAS  Google Scholar 

  • Mariani RL, de Mello WZ (2007) PM2.5-10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmos Environ 41:2887–2892

    Google Scholar 

  • Ocskay R, Salma I, Wang W, Maenhaut W (2006) Characterization and diurnal variation of size-resolved inorganic water-soluble ions at a rural background site. J Environ Monit 8:300–306

    Article  CAS  Google Scholar 

  • Ohta S, Okita T (1990) A chemical characterization of atmospheric aerosol in Sapporo. Atmos Environ 24:815–822

    Article  Google Scholar 

  • PRC MEP (2012) Ministry of Environmental Protection of the People’s Republic of China ( PRC MEP), Ambient Air Quality Standard GB3095-2012

  • Quan JN, Zhang XS, Zhang Q, Guo JH, Vogt RD (2008) Importance of sulfate emission to sulfur deposition at urban and rural sites in China. Atmos Res 89:283–288

    Article  CAS  Google Scholar 

  • Quinn PK, Coffman DJ, Bates TS, Welton EJ, Covert DS, Miller TL, Johnson JE, Maria S, Russell L, Arimoto R, Carrico CM, Rood MJ, Anderson J (2004) Aerosol optical properties measured on board the Ronald H Brown during ACE-Asia as a function of aerosol chemical composition and source region. J Geophys Res 109:28–46

    Google Scholar 

  • Rossi MJ (2003) Heterogeneous reactions on salts. Chem Rev 103:4823–4882

    Article  CAS  Google Scholar 

  • Song Y, Tang XY, Fang C, Zhang YH, Hu M, Zeng LM (2002) Source apportionment on fine particles in Beijing. Environ Sci 6:11–16

    Google Scholar 

  • Spurny KR (2000) Aerosol chemical processes in the environment. Lewis, Boca Raton

    Book  Google Scholar 

  • Suzuki I, Hayashi K, Igarashi Y, Takahashi H, Sawa Y, Ogura N, Akagi T, Dokiya Y (2008) Seasonal variation of water-soluble ion species in the atmospheric aerosols at the summit of Mt. Fuji. Atmos Environ 42:8027–8035

    Article  CAS  Google Scholar 

  • Tao J, Ho KF, Chen LG, Zhu LH, Han JL, Xu ZC (2009) Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. Particuology 7:68–75

    Article  CAS  Google Scholar 

  • ten Brink HM (1998) Reactive uptake of HNO3 and H2SO4 in sea-salt (NaCl) particles. J Aerosol Sci 29:57–64

    Article  Google Scholar 

  • US EPA (1997) US Environmental Protection Agency (US EPA), national ambient air quality standards for particulate matter, final rule. Fed Regist 62:38651–38701, 40 CFR Part 50

    Google Scholar 

  • Wall SM, John W, Ondo JL (1988) Measurement of aerosol size distributions for nitrate and major ionic species. Atmos Environ 8:1649–1656

    Article  Google Scholar 

  • Wang HB, Shooter D (2001) Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources. Atmos Environ 35:6031–6040

    Article  CAS  Google Scholar 

  • Wang HB, Shooter D (2002) Coarse-fine and day-night differences of water-soluble ions in atmospheric aerosols collected in Christchurch and Auckland, New Zealand. Atmos Environ 36:3519–3529

    Article  CAS  Google Scholar 

  • Wang Y, Zhuang GS, Tang A, Yuan H, Sun YL, Chen S, Zheng AH (2005) The ion chemistry and source of PM2.5 aerosol in Beijing. Atmos Environ 39:3771–3784

    Article  CAS  Google Scholar 

  • Wang Y, Zhuang GS, Zhang XY, Huang K, Xu C, Tang AH, Chen JM, An ZS (2006) The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos Environ 16:2935–2952

    Article  Google Scholar 

  • Watson JG, Chow JC, Lurmann FW, Musarra SP (1994) Ammonium nitrate, nitric acid and ammonia equilibrium in wintertime phoenix Arizona. J Air Waste Manag Assoc 44:405–412

    Article  CAS  Google Scholar 

  • Xiao H, Liu C (2004) Chemical characteristics of water soluble components in TSP over Guiyang, SW China, 2003. Atmos Environ 38:6297–6306

    Article  CAS  Google Scholar 

  • Xu LL, Chen XQ, Chen JS, Zhang FW, He C, Zhao JP (2012) Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos Res 104–105:264–272

    Article  Google Scholar 

  • Yao X, Chan CK, Fang M, Cadle S, Chan T, Mulawa P, He K, Ye B (2002) The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos Environ 36:4223–4234

    Article  CAS  Google Scholar 

  • Yin LQ, Niu ZC, Chen XQ, Chen JS, Xu LL, Zhang FW (2012) Chemical compositions of PM2.5 aerosol during haze periods in the mountainous city of Yong’an, China. J Environ Sci 24:1225–1233

    Article  CAS  Google Scholar 

  • Zhang FW, Xu LL, Chen JS, Yu YK, Niu ZC, Yin LQ (2011) Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009-May 2010. Atmos Res 106:150–158

    Article  Google Scholar 

  • Zhao YL, Gao Y (2008a) Acidic species and chloride depletion in coarse aerosol particles in the US east coast. Sci Total Environ 407:541–547

    Article  CAS  Google Scholar 

  • Zhao YL, Gao Y (2008b) Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmos Environ 42:4063–4078

    Article  CAS  Google Scholar 

  • Zhuang MZ, Yang HB, Wang J, Yu XT, Huang Z, Cao C, Zhuang XM (2006) Research on ionic characteristics of air particles in Xiamen. Mod Sci Instrum 6:92–95

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Knowledge Innovation Program of Chinese Academy of Sciences (no: KZCX2-EW-408 and KZCX2-YW-JS404 ) and the Commonweal Program of Environment Protection Department of China (no: 201009004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqiu Chen or Jinsheng Chen.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Niu, Z., Chen, X. et al. Characteristics of water-soluble inorganic ions in PM2.5 and PM2.5–10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China. Environ Sci Pollut Res 21, 5141–5156 (2014). https://doi.org/10.1007/s11356-013-2134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2134-7

Keywords

Navigation