Environmental Science and Pollution Research

, Volume 21, Issue 23, pp 13243–13251 | Cite as

EDS and μ-XRF mapping of amalgam degradation products in ancient mirrors

Chemistry in a sustainable society

Abstract

An amalgam mirror is a mirror type, used from the fifteenth century until the end of the nineteenth century, where the reflective layer is constituted by a tin amalgam layer adhered to a glass sheet. In this work, two amalgam mirrors samples were studied by scanning electron microscopy with an energy dispersive spectrometer and by micro-X-ray fluorescence elemental mapping to go deeply into the understanding of the degradation mechanism of the amalgam layer of ancient mirrors. The investigation has been focused for the first time on the reflective surface of the amalgam layer adherent to the glass sheet to better understand the processes of amalgam corrosion. The two amalgam degradation compounds, romarchite and cassiterite, has been spatially differentiated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) maps. SEM images and micro-X-ray fluorescence and EDS maps showed that the amalgam degradation products grow up to form hemispherical stratified calottes. This structure is probably due to a mechanism involves cyclic phases and oxygen radial diffusion from a superficial oxidation nucleus.

Keywords

Amalgam Mirror SEM-EDS μ-XRF Mapping Romarchite Cassiterite 

References

  1. Angelini E, Grassini S, Rosalbino F (2004) The mirrors of Villa della Regina in Turin: study of manufacturing and deterioration processes. Sci Technol Cult Herit 13(1–2):117–125Google Scholar
  2. Arizio E, Orsega EF, Falcone R (2013a) Artificial aging of tin amalgam mirrors: a preliminary study of alteration compounds and kinetics. Procedia Chem 8:3–10CrossRefGoogle Scholar
  3. Arizio E, Orsega EF, Sommariva G, Falcone R (2013b) Tin amalgam mirrors: investigation by XRF SEM-EDS, XRD and EPMA-WDS mapping. Appl Phys A 111:733–745CrossRefGoogle Scholar
  4. Feeney R, Schmidt SL, Strickholm P, Chadam J, Ortoleva P (1983) Periodic precipitation and coarsening waves: applications of the competitive particle growth model. J Chem Phys 78:1293–1311CrossRefGoogle Scholar
  5. Flicker M, Ross J (1974) Mechanism of chemical instability for periodic precipitation phenomena. J Chem Phys 60:3458–3465CrossRefGoogle Scholar
  6. Hadsund P (1993) The tin mercury mirror: its manufacturing technique and deterioration processes. Stud Conserv 38:3–16CrossRefGoogle Scholar
  7. Herrera LK, Duran A, Franquelo ML, Gonzàles-Elipe AR, Espinόs JP, Rubio-Zuazo J, Castro GR, Justo A, Peres-Rodriguez JL (2008a) Study by grazing incident diffraction and surface spectroscopy of amalgams from ancient mirrors. Central European J Chem 7(1):47–53CrossRefGoogle Scholar
  8. Herrera LK, Duran A, Franquelo ML, Jimenez de Haro MC, Justo Erbez A, Perez-Rodriguez JL (2008b) Studies of deterioration of tin–mercury alloy within ancient Spanish mirrors. J Cult Herit 9:41–46CrossRefGoogle Scholar
  9. Herrera LK, Duran A, Franquelo ML, Justo A, Peres-Rodriguez JL (2009a) Hg/Sn aqmalgam degradation of ancient glass mirrors. J Non Cryst Solids 355:1980–1983CrossRefGoogle Scholar
  10. Herrera LK, Justo A, Peres-Rodriguez JL (2009b) Study of nanocrystalline SnO2 particles formed during the corrosion processes of ancient amalgam mirrors. J Nano Res 8:99–107CrossRefGoogle Scholar
  11. Herrera LK, Justo A, Muñoz-Pàez A, Perez-Rodriguez JL, Lerf A, Wagner FE (2011) Study of European ancient mirrors using micro diffraction techniques and Mössbauer spectroscopy. Glass Science in Art and Conservation, Fraunhofer, pp 83–85Google Scholar
  12. Keller JB, Rubinow SI (1981) Recurrent precipitation and Liesegang rings. J Chem Phys 74:5000–5007CrossRefGoogle Scholar
  13. Liesegang RE (1896) Ueber einige Eigenschaften von Gallerten. Naturwissenschaftliche Wochenschrift 11(30):353–362Google Scholar
  14. Rapp J (2009) Archaeominerology. Springer, Berlin, p 180CrossRefGoogle Scholar
  15. Scott DA (1985) Periodic corrosion phenomena in bronze antiquities. Stud Conserv 30:49–57CrossRefGoogle Scholar
  16. Torge M, Krug S, Bücker M, Feldmann I, Scharf H, Witthuhn H (2010) Investigation of mercury emissions of historic tin–mercury–mirrors. Glass & Ceramic Conservation, Iterim meeting of the ICOM-ICC working group, October 3–6, Corning, NY, USA, 156–163Google Scholar
  17. Van Elteren JT, Izmer A, Šala M, Orsega EF, Šelih VS, Panighello S, Vanhaecke F (2013) 3D laser ablation-ICP-mass spectrometry mapping for the study of surface layer phenomena - a case study for weathered glass. J Analyt Atom Spect. doi:10.1039/C3JA30362D Google Scholar
  18. Zecchin L (1987) Studi sulla storia del vetro: Vetro e Vetrai di Murano. Arsenale Editore, Venezia, pp 128–156Google Scholar
  19. Zywitzki O, Nedon W, Kopte T, Modes T (2008) Characterisation of baroque tin amalgam mirrors of the historical Green Vault in Dresden. Appl Phys A 92:123–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • E. Arizio
    • 1
  • E. F. Orsega
    • 1
  • R. Falcone
    • 2
  • M. Vallotto
    • 2
  1. 1.Dept. of Molecular Sciences and NanotechnologiesCa’ Foscari University of VeniceVeniceItaly
  2. 2.Stazione Sperimentale del VetroMuranoItaly

Personalised recommendations