Abstract
Altamira Cave (north of Spain) contains one of the world's most prominent Paleolithic rock art paintings, which are threatened by a massive microbial colonization of ceiling and walls. Previous studies revealed that exchange rates between the cave and the external atmosphere through the entrance door play a decisive role in the entry and transport of microorganisms (bacteria and fungi) and nutrients to the interior of the cave. A spatial-distributed sampling and measurement of carrier (CO2) and trace (CH4) gases and isotopic signal of CO2 (δ13C) inside the cave supports the existence of a second connection (active gas exchange processes) with the external atmosphere at or near the Well Hall, the innermost and deepest area of the cave. A parallel aerobiological study also showed that, in addition to the entrance door, there is another connection with the external atmosphere, which favors the transport and increases microorganism concentrations in the Well Hall. This double approach provides a more complete knowledge on cave ventilation and revealed the existence of unknown passageways in the cave, a fact that should be taken into account in future cave management.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aira MJ, Rodríguez-Rajo F-J, Fernández-González M, Seijo C, Elvira-Rendueles B, Gutiérrez-Bustillo M, Abreu I, Pérez-Sánchez E, Oliveira M, Recio M, Morales J, Muñoz-Rodríguez A-F (2012) Cladosporium airborne spore incidence in the environmental quality of the Iberian Peninsula. Grana 51:293–304
Ballero M, Piu G, Ariu A (2000) The impact of the botanical gardens on the aeroplankton of the city of Cagliari, Italy. Aerobiologia 16:143–147
Bisht V, Singh BP, Arora N, Sridhara S, Gaur SN (2008) Allergens of Epicoccum nigrum grown in different media for quality source material. Allergy 55:274–280
Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41
Che F (2004) The principle and application of airborne microbiology. Science Press, Beijing, pp 1–41
Cooley JD, Wong WC, Jumper CA, Straus DC (1998) Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med 55:579–584
Crosson ER (2008) A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl Physics B 92:403–408
Cuezva S, Sanchez-Moral S, Saiz-Jimenez C, Cañaveras JC (2009) Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Community structure in oligotrophic cave environments. Int J Speleol 38:83–92
Cuezva S, Fernandez-Cortes A, Benavente D, Serrano-Ortiz P, Kowalski AS, Sanchez-Moral S (2011) Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: role of the surface soil layer. Atmos Environ 45:1418–1427
Docampo S, Trigo MM, Recio M, Melgar M, García-Sánchez J, Cabezudo B (2011) Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): diversity and origin. Sci Total Environ 409:835–843
Dredge J, Fairchild IJ, Harrison RM, Fernandez-Cortes A, Sanchez-Moral S, Jurado V, Gunn J, Smith A, Spotl C, Mattey D, Wynn PM, Grassineau N (2013) Cave aerosols: distribution and contribution to speleothem geochemistry. Quat Sci Rev 63:23–41
Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853
Elez J, Cuezva S, Fernandez-Cortes A, Garcia-Anton E, Benavante D, Cañaveras JC, Sanchez-Moral S (2013) A GIS based methodology to quantitatively define an adjacent protected area in a shallow karst cavity: the case of Altamira cave. J Environ Manage 118:122–134
Fernandez-Cortes A, Cuezva S, Sanchez-Moral S, Porca E, Jurado V, Martin-Sanchez PM, Saiz-Jimenez C (2011) Detection of human-induced environmental disturbances in a show cave. Environ Sci Poll Res 18:1037–1045
Flannigan B, Samson RA, Miller JD (2001) Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control. Taylor and Francis, London
Garcia-Anton E, Cuezva S, Fernandez-Cortes A, Sanchez-Moral S, Benavente D (2012) Daily variations of CO2, δ13CO2 and CH4 of cave air controlled by external weather conditions: example of rapid survey in Altamira cave (north of Spain). Geophys Res Abstracts 14:4859–4862
García-Lozano T, Aznar Oroval E, Juan Bañón JL (2012) First isolation in Spain of Aurantimonas altamirensis in a blood culture from a port-a-cath in a patient with Bence-Jones type multiple myeloma (in Spanish). Enferm Infec Microbiol Clin 30:217–218
Hoog GS de, Guarro J, Gené J, Figueras MJ (2000) Atlas of Clinical Fungi, 2nd edn. CBS, Utrecht and Universitat Rovira i Virgili, Reus.
Jurado V, Laiz L, Rodriguez-Nava V, Boiron P, Hermosin B, Sanchez-Moral S, Saiz-Jimenez C (2010a) Pathogenic and opportunistic microorganisms in caves. Int J Speleol 39:15–24
Jurado V, Porca E, Cuezva S, Fernandez-Cortes A, Sanchez-Moral S, Saiz-Jimenez C (2010b) Fungal outbreak in a show cave. Sci Total Environ 408:3632–3638
Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334
King AD, Hocking AD, Pitt JI (1979) Dichloran-rose bengal medium for enumeration and isolation of molds from foods. App Environ Microbiol 37:959–964
Kubicek CP, Komon-Zelazowska M, Druzhinina IS (2008) Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 9:753–763
Luong M-L, Békal S, Vinh DC, Lauzon D, Leung V, Al-Rawahi GN, Ng B, Burdz T, Bernard K (2008) First report of isolation and characterization of Aurantimonas altamirensis from clinical samples. J Clin Microbiol 46:2435–2437
Mendes RE, Denys GA, Fritsche TR, Jones NR (2009) Case report of Aurantimonas altamirensis bloodstream infection. J Clin Microbiol 47:514–515
Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob Biogeochem Cycle 17:1022. doi:10.1029/2001GB001850
Porca E (2011) Aerobiología: mecanismos de dispersión de los microorganismos en cuevas turísticas. Ph.D. Thesis, University of Seville.
Porca E, Jurado V, Martin-Sanchez PM, Hermosin B, Bastian F, Alabouvette C, Saiz-Jimenez C (2011) Aerobiology: an ecological indicator for early detection and control of fungal outbreaks in caves. Ecol Indic 11:1594–1598
Saiz-Jimenez C, Cuezva S, Jurado V, Fernandez-Cortes A, Porca E, Benavente D, Cañaveras JC, Sanchez-Moral S (2011) Paleolithic art in peril: policy and science collide at Altamira Cave. Science 334:42–43
Salar A, Carratalà J, Fernández-Sevilla A, Marín D, Grañena A (1997) Pneumonia caused by Micrococcus species in a neutropenic patient with acute leukemia. Eur J Clin Microbiol Infect Dis 16:546–548
Sanchez-Moral S, Cuezva S, Fernández-Cortés A, Benavente D, Cañaveras JC (2010) Effect of ventilation on karst system equilibrium (Altamira Cave, N Spain): an appraisal of karst contribution to the global carbon cycle balance. In: Andreo B, Carrasco F, Duran JJ, LaMoreaux JW (eds) Advances in research in karst media. Springer, Berlin, pp 469–474
Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rolleke S (2002) Altamira Cave paleolithic paintings harbour partly unknown bacterial communities. FEMS Microbiol Lett 211:7–11
Spieksma FTHM (1995) Outdoor atmospheric mould spores in Europe. XVIth European Congress of Allergology and Clinical Immunology. Monduzzi, Bologna, pp 625–630
Stenfors LP, Mayr R, Scherer S, Granum PE (2002) Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett 215:47–51
Téllez-Castillo CJ, González Granda D, Bosch Alepuz M, Jurado Lobo V, Saiz-Jimenez C, Juan JL, Millán Oria J (2010) Isolation of Aurantimonas altamirensis from pleural effusions. J Med Microbiol 59:1126–1129
Usó J, Gil M, Gomila B, Tirado MD (2003) Endocarditis by Micrococcus luteus (in Spanish). Enferm Infec Microbiol Clin 21:116–120
von Eiff C, Kuhn N, Herrmann M, Weber S, Peters G (1996) Micrococcus luteus as a cause of recurrent bacteremia. Pediatr Infect Dis J 15:711–713
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322
Yoshino Y, Kitazawa T, Kamimura M, Tatsuno K, Ota Y, Yotsuyanagi H (2011) Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature. J Infect Chemother 17:278–282
Zimmermann J, Gonzalez JM, Ludwig W, Saiz-Jimenez C (2005) Detection and phylogenetic relationships of a highly diverse uncultured acidobacterial community on paleolithic paintings in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiol J 22:379–388
Acknowledgments
This research was supported by the Spanish Ministry of Sciences and Innovation, project CGL2010-17108/BTE. EG-A is supported by a CSIC JAE-Predoctoral grant. SC benefits of a postdoctoral fellowship from the Spanish Ministry of Science and Innovation, research programme Juan de la Cierva. AF-C was funded by a postdoctoral fellowship the JAE-Doc Program (CSIC). AZM was supported by FCT grant SFRH/BPD/63836/2009. Altamira Cave Research Centre and Museum staffs are acknowledged for their collaboration throughout the research period. This is a TCP-CSD 2007–00058 paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Robert Duran
Rights and permissions
About this article
Cite this article
Garcia-Anton, E., Cuezva, S., Jurado, V. et al. Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environ Sci Pollut Res 21, 473–484 (2014). https://doi.org/10.1007/s11356-013-1915-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-013-1915-3