Skip to main content
Log in

Risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in school children

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ∼11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m−3) with four- and five-ring PAHs having ∼80 % contribution. Total PAHs were dominated by carcinogenic species (∼75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day−1) followed by monsoon (232.59 ng day−1) and summer (171.08 ng day−1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours > commuting to school > resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r = 0.94, p < 0.001) with the daily inhalation exposure level of school children. A conservative estimate of ∼11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akyüz M, Çabuk H (2009) Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 170:13–21

    Article  Google Scholar 

  • Anderson LM, Diwan BA, Fear NT, Roman E (2000) Critical windows of exposure for children’s health: cancer in human epidemiological studies and neoplasms in experimental animal models. Environ Health Perspect 108:573–594

    Article  Google Scholar 

  • American Thoracic Society (1996) Health effects of outdoor air pollution. Part 2. Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society. Am J Respir Crit Care Med 153:477–498

    Article  Google Scholar 

  • Baxter LK, Clougherty JE, Laden F, Levy JI (2007) Predictors of concentrations of nitrogen dioxide, particulate matter, and particle constituents inside of lower socioeconomic status urban homes. J Expo Sci Environ Epidemiol 17:433–444

    Article  CAS  Google Scholar 

  • Beckerman B, Jerrett M, Brook JR, Verma DK, Arain MA, Finkelstein MM (2008) Correlation of nitrogen dioxide with other traffic pollutants near a major expressway. Atmos Environ 42:275–290

    Article  CAS  Google Scholar 

  • Bonn PJA, Driscoll K (1996) Particles, inflammation and respiratory tract carcinogenesis. Toxicol Lett 88:109–113

    Article  Google Scholar 

  • Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ 33:3731–3738

    Article  CAS  Google Scholar 

  • Census of India (2011) Government of India, Office of the Registrar General and Census Commissioner, New Delhi

  • Chen SC, Liao CM (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123

    Article  CAS  Google Scholar 

  • Chithra VS, Shiva Nagendra SM (2012) Indoor air quality investigations in a naturally ventilated school building located close to an urban roadway in Chennai, India. Build Environ 54:159–167

    Article  Google Scholar 

  • Dejmek J, Solansky I, Beneš I, Leníček J, Šrám RJ (2000) The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 108:1159–1164

    Article  CAS  Google Scholar 

  • Delgado-Saborit JM, Aquilina N, Baker S, Harrad S, Meddings C, Harrison RM (2010) Determination of atmospheric particulate-phase polycyclic aromatic hydrocarbons from low volume air samples. Anal Methods 2:231–242

    Article  CAS  Google Scholar 

  • Delhi Govt. (2012) http://delhi.gov.in/wps/wcm/connect/fac089804f846492b2e0b2132654ee81/59+−+79+Transport+.pdf?MOD=AJPERES

  • DeMarini D, Brooks L, Warren S, Kobayashi T, Gilmour M, Singh P (2004) Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles. Environ Health Perspect 112:814–819

    Article  CAS  Google Scholar 

  • Dickhut RM, Canuel EA, Gustafson KE, Liu K, Arzayus KM, Walker SE, Edgecombe G, Gaylor MO, MacDonald EH (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in Chesapeake Bay region. Environ Sci Technol 34:4635–4640

    Article  CAS  Google Scholar 

  • Dockery DW, Skerrett PJ, Walters D, Gilliland F (2005) Development of lung function. In: Effects of air pollution on children’s health and development: a review of the evidence. World Health Organization special programme on health and environment. European Centre for Environment and Health, Bonn, pp 108–133

    Google Scholar 

  • Durant J, Busby W, Lafleur A, Penman B, Crespi C (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res 371:123–157

    Article  CAS  Google Scholar 

  • Durant J, Lafleur A, Busby W, Donhoffner L, Penman B, Crespi C (1999) Mutagenicity of C24H14 PAH in human cells expressing CYP1A1. Mutat Res Genet Toxicol Environ Mutagen 446:1–14

    Article  CAS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of upper and lower atmosphere: theory, experiments and applications. Academic, San Diego

    Google Scholar 

  • Foster A, Kumar N (2011) Health effects of air quality regulations in Delhi, India. Atmos Environ 45:1675–1683

    Article  CAS  Google Scholar 

  • Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and non-foggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111, D15217

  • Goyal R, Khare M (2011) Indoor air quality modelling for PM10, PM2.5, and PM1.0 in naturally ventilated classrooms of an urban Indian school building. Environ Monit Assess 176:501–516

    Article  CAS  Google Scholar 

  • Guo H, Lee SC, Ho KF, Wang XM, Zou SC (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37:5307–5317

    Article  CAS  Google Scholar 

  • Gurjar BR, Jain A, Sharma A, Agarwal A, Gupta P, Nagpure AS, Lelieveld J (2010) Human health risks in megacities due to air pollution. Atmos Environ 44:4606–4613

    Article  CAS  Google Scholar 

  • Hoek G, Pattenden S, Willers S, Antova T, Fabianova E, Braun-Fahrländer C, Forastiere F, Gehring U, Luttmann-Gibson H, Grize L, Heinrich J, Houthuijs D, Janssen N, Katsnelson B, Kosheleva A, Moshammer H, Neuberger M, Privalova L, Rudnai P, Speizer F, Slachtova H, Tomaskova H, Zlotkowska R, Fletcher T (2012) PM10 and children's respiratory symptoms and lung function in the PATY study. Eur Respir J 40:538–547

    Article  Google Scholar 

  • Hu B, Freihaut J, Bahnfleth W, Aumpansub P, Thran B (2007) Modeling the influence of human activity on particle resuspension and dispersion in a multizone indoor environment with HVAC system. J Archit Eng 13:187–193

    Article  Google Scholar 

  • Jung KH, Yan B, Chillrud SN, Perera FP, Whyatt R, Camann D, Kinney PL, Miller RL (2010) Assessment of benzo(a)pyrene equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int J Environ Res Public Health 7:1889–1900

    Article  CAS  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  • Khillare PS, Sarkar S (2012) Airborne inhalable metals in residential areas of Delhi, India: distribution, source apportionment and health risks. Atmos Pol Res 3:46–54

    CAS  Google Scholar 

  • Koistinen KJ, Hanninen O, Rotko T, Edwards RD, Moschandreas D, Jantunen MJ (2001) Behavioral and environmental determinants of personal exposures to PM2.5 in EXPOLIS—Helsinki, Finland. Atmos Environ 35:2473–2481

    Article  CAS  Google Scholar 

  • Kolokotroni M, Ge YT, Katsoulas D (2002) Monitoring and modelling indoor air quality and ventilation in classrooms within a purpose-designed naturally ventilated school. Indoor Built Environ 11:316–326

    Article  CAS  Google Scholar 

  • Kumar A, Tyagi SK (2006) Benzene and toluene profiles in ambient air of Delhi as determined by active sampling and GC analysis. J Sci Ind Res India 65:252–257

    CAS  Google Scholar 

  • Lanki T, Ahokas A, Alm S, Janssen NAH, Hoek G, De Hartog JJ, Brunekreef B, Pekkanen J (2007) Determinants of personal and indoor PM2.5 and absorbance among elderly subjects with coronary heart disease. J Expo Sci Environ Epidemiol 17:124–133

    Article  CAS  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881

    Article  CAS  Google Scholar 

  • Lee RGM, Jones KC (1999) The influence of meteorology and air masses on daily atmospheric PCB and PAH concentrations at a UK location. Environ Sci Technol 33:705–712

    Article  CAS  Google Scholar 

  • Levy JI, Bennett DH, Melly SJ, Spengler JD (2003) Influence of traffic patterns on particulate matter and polycyclic aromatic hydrocarbon concentrations in Roxbury, Massachusetts. J Expo Sci Environ Epidemiol 13:364–371

    Article  CAS  Google Scholar 

  • Li CS, Ro YS (2000) Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmos Environ 34:611–620

    Article  CAS  Google Scholar 

  • Li J, Zhang G, Li XD, Qi SH, Liu GQ, Peng XZ (2006) Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci Total Environ 355:145–155

    Article  CAS  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  • Liu Y, Zhu L, Shen X (2001) Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ Sci Technol 35:840–844

    Article  CAS  Google Scholar 

  • Ludykar D, Westerholm R, Almén J (1999) Cold start emissions at +22, −7 and −20°C ambient temperatures from a three-way catalyst (TWC) car: regulated and unregulated exhaust components. Sci Total Environ 235:65–69

    Article  CAS  Google Scholar 

  • Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. J Hazard Mater 177:190–198

    Article  CAS  Google Scholar 

  • Masih J, Singhvi R, Kumar K, Jain VK, Taneja A (2012) Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of Northern India. Aerosol Air Qual Res 12:515–525

    CAS  Google Scholar 

  • Menichini E, Monfredini F, Merli F (1999) The temporal variability of the profile of carcinogenic polycyclic aromatic hydrocarbons in urban air: a study in a medium traffic area in Rome, 1993–1998. Atmos Environ 33:3739–3750

    Article  CAS  Google Scholar 

  • MoEF (2009) Environment (Protection) Seventh Amendment Rules. Ministry of Environment and Forests. Government of India Press, New Delhi

    Google Scholar 

  • Hernández S, Mugica V, Torres M, García R (2010) Seasonal variation of polycyclic aromatic hydrocarbons exposure levels in Mexico City. J Air Waste Manage Assoc 60:548–555

    Article  Google Scholar 

  • Naumova YY, Eisenreich SJ, Turpin BJ, Weisel CP, Morandi MT, Colome SD, Totten LA, Stock TH, Winer AM, Alimokhtari S, Kwon J, Shendell D, Jones J, Maberti S, Wall SJ (2002) Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the U.S. Environ Sci Technol 36:2552–2559

    Article  CAS  Google Scholar 

  • Nielsen T, Jorgensen H, Larsen J, Poulsen M (1996) City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. Sci Total Environ 189–190:41–49

    Article  Google Scholar 

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharm 16:290–300

    Article  CAS  Google Scholar 

  • Norramit P, Cheevaporn V, Itoh N, Tanaka K (2005) Characterization and carcinogenic risk assessment of polycyclic aromatic hydrocarbons in the respirable fraction of airborne particles in the Bangkok metropolitan area. J Health Sci 51:437–446

    Article  CAS  Google Scholar 

  • Northridge ME, Yankura J, Kinney PL, Santella RM, Shepard P, Riojas Y, Agarwal M, Stickland P (1999) Diesel exhaust exposure among adolescents in Harlem: a community-driven study. Am J Public Health 89:998–1002

    Article  CAS  Google Scholar 

  • Pandey JS, Rakesh K, Devotta S (2005) Health risks of NO2, SPM and SO2 in Delhi (India). Atmos Environ 39:6868–6874

    Article  CAS  Google Scholar 

  • Park JS, Wade TL, Sweet ST (2002) Atmospheric deposition of PAHs, PCBs, and organochlorine pesticides to Corpus Christi Bay, Texas. Atmos Environ 36:1707–1720

    Article  CAS  Google Scholar 

  • Pengchai P, Chantara S, Sopajaree K, Wangkarn S, Tengcharoenkul U, Rayanakorn M (2009) Seasonal variation, risk assessment and source estimation of PM10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. Environ Monit Assess 154:197–218

    Article  CAS  Google Scholar 

  • Perera FP (1997) Environment and cancer: who are susceptible? Science 278:1068–1073

    Article  CAS  Google Scholar 

  • PereraFP RV, Whyatt RM, Tsai WY, Tang D, Diaz D, Hoepner L, Barr D, Tu YH, Camann D, Kinney P (2006) Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 114:1287–1292

    Article  Google Scholar 

  • Planning Department (2008) Economic survey of Delhi 2007–2008. Government of NCT of Delhi, Delhi

    Google Scholar 

  • Planning Department (2011) Economic survey of Delhi 2010–2011. Government of NCT of Delhi, Delhi

    Google Scholar 

  • Quiteiro S, Arbilla G, Bauerfeld G, Moreira J (2007) Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in airborne particles PM10 collected in Rio de Janeiro, Brazil. Water Air Soil Pollut 179:79–92

    Article  Google Scholar 

  • Rajarathnam U, Seghal M, Nairy S, Patnayak RC, Chhabra SK, Kilnani KV, Ragavan S (2011) Time-series study on air pollution and mortality in Delhi. In: Public health and air pollution in Asia (PAPA): coordinated studies of short-term exposure to air pollution and daily mortality in two Indian cities. Research Report 157. Health Effects Institute, Boston, MA

  • Rajput N, Lakhani A (2010) Measurements of polycyclic aromatic hydrocarbons in an urban atmosphere of Agra, India. Atmosfera 23:165–183

    CAS  Google Scholar 

  • Reponen T, Grinshpun SA, Trakumas S, Martuzevicius D, Wang ZM, LeMasters G, Lockey JE, Biswas P (2003) Concentration gradient patterns of aerosol particles near interstate highways in the Greater Cincinnati airshed. J Environ Monit 5:557–562

    Article  CAS  Google Scholar 

  • Rickwood P, Knight D (2009) The health impacts of local traffic pollution on primary school age children. State of Australian Cities 2009 conference proceedings

  • Saarnio K, Sillanpää M, Hillamo R, Sandell E, Pennanen AS, Salonen RO (2008) Polycyclic aromatic hydrocarbons in size-segregated particulate matter from six urban sites in Europe. Atmos Environ 42:9087–9097

    Article  CAS  Google Scholar 

  • Sahu SK, Beig G, Parkhi NS (2011) Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during commonwealth games 2010. Atmos Environ 45:6180–6190

    Article  CAS  Google Scholar 

  • Sarkar S, Khillare PS, Jyethi DS, Hasan A, Parween M (2010) Chemical speciation of respirable suspended particulate matter during a major firework festival in India. J Hazard Mater 184:321–330

    Article  CAS  Google Scholar 

  • Schwartz J (2004) Air pollution and children's health. Paediatrics 113:1037–1043

    Google Scholar 

  • Sequeira J (2008) A toxic issue: air pollution in New Delhi. Harv Int Rev 30:3

    Google Scholar 

  • Shi GL, Feng YC, Wu JH, Li X, Wang YQ, Xue YH, Zhu T (2009) Source identification of polycyclic aromatic hydrocarbons in urban particulate matter of Tangshan, China. Aerosol Air Qual Res 3:309–315

    Google Scholar 

  • Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationship of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33:5071–5079

    Article  CAS  Google Scholar 

  • Spira-Cohen A, Chen LC, Kendall M, Sheesley R, Thurston GD (2010) Personal exposures to traffic-related particle pollution among children with asthma in the South Bronx, NY. J Expo Sci Environ Epidemiol 20:446–456

    Article  CAS  Google Scholar 

  • Tan JH, Bi XH, Duan JC, Rahn KA, Sheng GY, Fu JM (2006) Seasonal variation of particulate polycyclic aromatic hydrocarbons associated with PM10 in Guangzhou, China. Atmos Res 80:250–262

    Article  CAS  Google Scholar 

  • Tuntawiroon J, Mahidol C, Navasumrit P, Autrup H, Ruchirawat M (2007) Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis 28:816–822

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (2010) Development of a relative potency factor (RPF) approach for polycyclic aromatic hydrocarbon (PAH) mixtures (external review draft). EPA/635/R-08/012A. USEPA, Washington DC

  • Wada M, Kido H, Kishikawa N, Tou T, Tanaka M, Tsubokura J, Shironita M, Matsui M, Kuroda N, Nakashima K (2001) Assessment of air pollution in Nagasaki city: determination of polycyclic aromatic hydrocarbons and their nitrated derivatives and some metals. Environ Pollut 115:139–147

    Article  CAS  Google Scholar 

  • Wang X, Cheng H, Xu X, Zhuang G, Zhao C (2008) A wintertime study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in Beijing: assessment of energy structure conversion. J Hazard Mater 157:47–56

    Article  CAS  Google Scholar 

  • World Health Organization (2000) Air Quality Guidelines for Europe, 2nd ed., WHO, Regional Office for Europe, Copenhagen

  • Xue WL, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93

    Article  CAS  Google Scholar 

  • Yassaa N, Meklati BY, Cecinato A, Marino F (2001) Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. Atmos Environ 35:843–1851

    Google Scholar 

  • Yunker MB, MacDonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zeiger E (2001) Mutagens that are not carcinogens: faulty theory or faulty tests? Mutat Res Genet Toxicol Environ Mutagen 492:29–38

    Article  CAS  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819

    Article  CAS  Google Scholar 

  • Zhou B, Zhao B (2012) Population inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk in Beijing region: contributions of indoor and outdoor sources and exposure. Atmos Environ 62:472–480

    Article  CAS  Google Scholar 

  • Zhou Y, Levy JI (2007) Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis. BMC Publ Health 7:89

    Article  Google Scholar 

Download references

Acknowledgments

Fellowship awarded by Indian Council of Medical Research (ICMR) to DSJ is duly acknowledged. The permission given by Kulachi Hansraj Model School, New Delhi to use the school building for operating the air sampler is acknowledged. The authors are thankful to the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Khillare.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jyethi, D.S., Khillare, P.S. & Sarkar, S. Risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in school children. Environ Sci Pollut Res 21, 366–378 (2014). https://doi.org/10.1007/s11356-013-1912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1912-6

Keywords

Navigation