Environmental Science and Pollution Research

, Volume 21, Issue 1, pp 568–583 | Cite as

Fate of para-toluenesulfonamide (p-TSA) in groundwater under anoxic conditions: modelling results from a field site in Berlin (Germany)

  • Raffaella Meffe
  • Claus Kohfahl
  • Enrico Hamann
  • Janek Greskowiak
  • Gudrun Massmann
  • Uwe Dünnbier
  • Asaf Pekdeger
Research Article


This article reports on a field modelling study to investigate the processes controlling the plume evolution of para-toluenesulfonamide (p-TSA) in anoxic groundwater in Berlin, Germany. The organic contaminant p-TSA originates from the industrial production process of plasticisers, pesticides, antiseptics and drugs and is of general environmental concern for urban water management. Previous laboratory studies revealed that p-TSA is degradable under oxic conditions, whereas it appears to behave conservatively in the absence of oxygen (O2). p-TSA is ubiquitous in the aquatic environment of Berlin and present in high concentrations (up to 38 μg L−1) in an anoxic aquifer downgradient of a former sewage farm, where groundwater is partly used for drinking water production. To obtain refined knowledge of p-TSA transport and degradation in an aquifer at field scale, measurements of p-TSA were carried out at 11 locations (at different depths) between 2005 and 2010. Comparison of chloride (Cl) and p-TSA field data showed that p-TSA has been retarded in the same manner as Cl. To verify the transport behaviour under field conditions, a two-dimensional transport model was setup, applying the dual-domain mass transfer approach in the model sector corresponding to an area of high aquifer heterogeneity. The distribution of Cl and p-TSA concentrations from the site was reproduced well, confirming that both compounds behave conservatively and are subjected to retardation due to back diffusion from water stagnant zones. Predictive simulations showed that without any remediation measures, the groundwater quality near the drinking water well galleries will be affected by high p-TSA loads for about a hundred years.


p-TSA Microorganic pollutants Wastewater irrigation Transport modelling Emerging contaminants Dual-domain mass transfer approach 



The authors want to thank Dr. Malaak Kallache of the Imdea-Water Institute (Madrid, Spain) for her advices and help in data processing.


  1. Abdel-Shafy H, Guindi KA, Tawfik NS (2008) Groundwater contamination as affected by long term sewage irrigation in Egypt. In: Al Baz I et al (ed) Efficient management of wastewater. Springer, Berlin–Heidelberg, pp 53–63Google Scholar
  2. Arienzo M, Christen EW, Quayle W, Kumar A (2009) A review of the fate of potassium in the soil-plant system after land application of wastewaters. J of Hazard Mater 164:415–422CrossRefGoogle Scholar
  3. Banzhaf S, Nödler K, Licha T, Scheytt T (2012) Redox-sensitivity and mobility of selected pharmaceuticals compounds in a low flow column experiment. Sci Total Environ 438:113–121CrossRefGoogle Scholar
  4. Barber LB, Keefe SH, Leblanc DR, Bradley PM, Chapelle FH, Meyer MT, Loftin KA, Kolpin DW, Rubio F (2009) Fate of sulfamethoxazole, 4-nonylphenol and 17b-estradiol in groundwater contaminated by wastewater treatment plant effluent. Environ Sci Technol 43:4843–4850CrossRefGoogle Scholar
  5. Beljaars PR, Vandijk R, Brands A (1994) Determination of p-toluenesulfonamide in ice-cream by combination of continuous-flow and liquid-chromatography—summary of collaborative study. J AOAC Int 77(3):672–674Google Scholar
  6. BWB (2000) Research and development plan “Development of a coupled nitrification-denitrification method for in-situ remediation of heavily nitrogen contaminated aquifer”. Project executing institute: Research Center of Karlsruhe (FZK) (in German)Google Scholar
  7. BWB (2007)
  8. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sed Petrol 51(2):359–365Google Scholar
  9. Bjarsch B (1997) 125 years of the Berliner sewage farm irrigation history. Wasser Boden 49:45–48 (in German)Google Scholar
  10. Chiang HW, Kinzelbach W (2001) 3-D groundwater modeling with PMWIN. Springer, BerlinGoogle Scholar
  11. Feehley CE, Zheng C, Molz FJ (2000) A dual-domain mass transfer approach for modeling solute transport in heterogeneous aquifers: application to the macrodispersion experiment (MADE) site. Water Resour Res 36(9):2501–2515CrossRefGoogle Scholar
  12. Gelhar LW, Mantoglou A, Welty C, Rehfeldt KR (1985) A review of field-scale physical solute transport processes in saturated and unsaturated porous media. Rep. EA-4190, Electro. Power Res. Ins., Palo AltoGoogle Scholar
  13. Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field scale dispersion in aquifers. Water Resour Res 28(7):1955–1974CrossRefGoogle Scholar
  14. ZGI (Zentrales Geologisches Institut, Berlin) (1984) Hydrogeologische Karte der Deutschen Demokratischen Republik, 1:50.000Google Scholar
  15. Greskowiak J, Prommer H, Massmann G, Nützman G (2006) Modeling seasonal redoxdynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater. Environ Sci Technol 40(21):6615–6621CrossRefGoogle Scholar
  16. Grummt T, Dieter HH (2006) Investigation report on the compound p-TSA. German Federal Environmental Agency (UBA), Bad Elster (in German)Google Scholar
  17. Hamann E (2009) Reactive transport modeling of an urban groundwater contamination coming a former sewage farm. Doctoral thesis, Humboldt Universität Berlin.
  18. Hamm SY, Bidaux P (1996) Dual-porosity fractal models for transient flow analysis in fissured rocks. Water Resour Res 32(9):2246–2733CrossRefGoogle Scholar
  19. Haneke KE (2002) Toxicological summary for chloramine-T [127-65-1] and p-toluenesulfonamide [70-55-3]. Integrated Laboratory System (, Integrated Laboratory Systems, pp. 68
  20. Harvey CP, Gorelick SM (2000) Rate-limited mass transfer or macrodispersion: which dominates plume evolution at the Macrodispersion Experiment (MADE) site?. Water Resour Res 36(3):637–650Google Scholar
  21. Haselow JS, Greenkorn RA (1991) An experimental investigation of the effect of idealized heterogeneity on the dispersion of miscible fluids. Water Resour Res 27(9):2473–2482CrossRefGoogle Scholar
  22. Hass U, Duennbier U, Massmann G (2012) Occurrence of psychoactive compounds and their metabolites in groundwater downgradient of a decommissioned sewage farm in Berlin (Germany). Environ Sci Pollut Res Int 19(6):2096–2106CrossRefGoogle Scholar
  23. Heberer T, Stan HJ (1994) N-(phenylsulfonyl)-sarcosine a new contaminant in sewage farm ground-water. Fresenius Environ Bull 3(10):639–643Google Scholar
  24. Henze M, Harremoes P, Cour Jansen P, Jes la Cour J, Arvin E (1995) Wastewater treatment, biological and chemical processes. Springer, Heidelberg, ISBN: 978-3-540-42228-0Google Scholar
  25. Hoffmann C, Böken H, Metz R, Renger M (2000) Use of boulder clay-excavation to ensure from pollution with heavy metals. Large-scale contaminated sites, 24 Branderburg State Environmental Agency, Potsdam (in German)Google Scholar
  26. Horner C, Engelmann F, Nützmann G (2009) Model based verification and prognosis of acidification and sulphate releasing process downstream of a former sewage field in Berlin (Germany). J Control Hydrol 106:83–98CrossRefGoogle Scholar
  27. Jørgensen PR, Helstrup T, Urup J, Seifert D (2004) Modeling of non-reactive solute transport in fracturated clayey till during variable flow rate and time. J Control Hydrol 3–4:193–216CrossRefGoogle Scholar
  28. Kinzelbach W, Schafer W, Herzer J (1991) Numerical modeling of natural and enhanced denitrification processes in aquifers. Water Res Resour 27:1123–1135CrossRefGoogle Scholar
  29. Li PJ, Stagnitti F, Xiong X, Peterson J (2009) Temporal and spatial distribution patterns of heavy metals in soils at a long-standing sewage farm. Environ Monit Asses 149(1–4):275–282CrossRefGoogle Scholar
  30. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568CrossRefGoogle Scholar
  31. McDonald MG, Harbaugh AW (1998) A modular three-dimensional finite-difference groundwater flow model. U.S. Geological Survey Techniques of Water Resources Investigations, Book 6, 586Google Scholar
  32. Meffe R, Kohfahl C, Holzbecher E, Massmann G, Richter D, Dünnbier U, Pekdeger A (2010) Modelling the removal of p-TSA (para-toluenesulfonamide) during rapid sand filtration used for drinking water treatment. Water Res 44:205–213CrossRefGoogle Scholar
  33. Meffe R, Massmann G, Kohfahl C, Taute T, Richter D, Dünnbier U, Pekdeger A (2012) Investigating the redox sensitivity of para-toluenesulfonamide (p-TSA) in groundwater. Environ Earth Sci. doi: 10.1007/s12665-011-1130-9 Google Scholar
  34. Meinertz JR, Schmidt LJ, Stehly GR, Gingerich WH (1999) Liquid chromatographic determination of para-toluenesulfonamide in edible fillet tissues from three species of fish. J AOAC Int 82(5):1064–1070Google Scholar
  35. Metcalf and Eddy, Inc (1991) Wastewater engineering: treatment, disposal and reuse, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  36. OECD (1994) Screening information data set for high production volume chemicals. Vol.2, UNEP Chemicals, 28Google Scholar
  37. Pal A, Gin AYC, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069CrossRefGoogle Scholar
  38. Reichelt P (2006) Forgotten countryside sewage farms: a travel through 200 years of history. P. Reichelt, Stahnsdorf. ISBN 3-00-015522-8. (in German)Google Scholar
  39. Richter D, Dünnbier U, Massmann G, Pekdeger A (2007) Quantitative determinations of three sulfonamides in environmental water samples using liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1157(1–2):115–121CrossRefGoogle Scholar
  40. Richter D, Massmann G, Dünnbier U (2008a) Identification and significance of sulphonamides (p-TSA, o-TSA, BSA) in an urban water cycle (Berlin, Germany). Water Res 42(6–7):1369–1378CrossRefGoogle Scholar
  41. Richter D, Massmann G, Dünnbier U (2008b) Behaviour and biodegradation of sulphonamides (p-TSA, o-TSA, BSA) during drinking water treatment. Chemosphere 71(8):1574–1581CrossRefGoogle Scholar
  42. Richter D, Massmann G, Taute T, Dünnbier U (2009) Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany. J Contam Hydrol 106:183–194CrossRefGoogle Scholar
  43. Schaffer M, Boxberger N, Börnick H, Licha T, Worch E (2012) Sorption influenced transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different pH. Chemosphere 87(5):513–520CrossRefGoogle Scholar
  44. Scheytt T, Grams S, Asbrand M (2000) Grundwasserströmung und Beschaffenheit unter dem Einfluss 100-jähriger Rieselfeldwirtschaft. Wasser and BodenGoogle Scholar
  45. Scheytt T, Marsmann P, Leidig M, Pekdeger A, Heberer T (2004) Transport of pharmaceutically active compounds in saturated laboratory columns. Ground Water 42(5):767–773CrossRefGoogle Scholar
  46. Senstadt (2007) Environmental atlas. New groundwater formation. Urban and Environmental Information System (UEIS). Berlin Department for Urban Development.
  47. Siebe C, Fisher WR (1996) Effect of long-term irrigation with untreated sewage effluents on soil properties and heavy metal adsorption of Leptosols and Vertisols in Central Mexico. Zeitschrift für Pflanzenernahrung und Bodenkunde 159(4):357–364CrossRefGoogle Scholar
  48. Stasinakis AS, Mermigka S, Samaras VG, Farmaki E, Thomaidis NS (2012) Occurrence of endocrine disrupters and selected pharmaceuticals in Aisona River (Greece) and environmental risk assessment using hazard indexes. Environ Sci Pollut Res 19(4):1013–1025CrossRefGoogle Scholar
  49. van Genuchten MT, Wierenga PJ (1977) Mass transport studies in sorbing porous media. 2 Experimental evaluation with tritrium (3H2O). Soil Sci Soc Am J 41:272–278CrossRefGoogle Scholar
  50. Xu J, Wu L, Chang A, Zhang Y (2010) Impact of long-term reclaimed wastewater irrigation on agricultural soils: a preliminary assessment. J Hazard Mater 183(1–3):780–786CrossRefGoogle Scholar
  51. Zheng C, Bennett GD (2002) Applied contaminant transport modeling, 2nd edn. Wiley, New YorkGoogle Scholar
  52. Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminations in groundwater system; documentation and user’s guide SERDP-99-1. US Army Corps of Engineers, WashingtonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raffaella Meffe
    • 1
  • Claus Kohfahl
    • 2
    • 3
  • Enrico Hamann
    • 3
  • Janek Greskowiak
    • 4
  • Gudrun Massmann
    • 4
  • Uwe Dünnbier
    • 5
  • Asaf Pekdeger
    • 3
  1. 1.Instituto Madrileño de Estudios AvanzadoAlcalá de HenaresSpain
  2. 2.Instituto Geológico y MineroSevillaSpain
  3. 3.Institute of Geological SciencesFreie Universität BerlinBerlinGermany
  4. 4.Department of Biology and Environmental SciencesCarl von Ossietzky Universität OldenburgOldenburgGermany
  5. 5.Department of LaboratoriesBerliner WasserbetriebeBerlinGermany

Personalised recommendations