Skip to main content

Advertisement

Log in

Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A field investigation, field experiment, and hydroponic experiment were conducted to evaluate feasibility of using Oenothera glazioviana for phytostabilization of copper-contaminated soil. In semiarid mine tailings in Tongling, Anhui, China, O. glazioviana, a copper excluder, was a dominant species in the community, with a low bioaccumulation factor, the lowest copper translocation factor, and the lowest copper content in seed (8 mg kg−1). When O. glazioviana was planted in copper-polluted farmland soil in Nanjing, Jiangsu, China, its growth and development improved and the level of γ-linolenic acid in seeds reached 17.1 %, compared with 8.73 % in mine tailings. A hydroponic study showed that O. glazioviana had high tolerance to copper, low upward transportation capacity of copper, and a high γ-linolenic acid content. Therefore, it has great potential for the phytostabilization of copper-contaminated soils and a high commercial value without risk to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarenga P, Gonçalves AP, Fernandes RM, Varennes AD, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ 406:43–56

    Article  CAS  Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Giacometti M, Roehrs DD, Lambais MR, Camargo FAO (2011) Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste. Biol Trace Elem Res 143:1729–1739

    Article  CAS  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Balsdi SM, Henderson KLD, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24:109–122

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Barrutia O, Artetxe U, Hernández A, Olano JM, García-Plazaola JI, Garbisu C, Becerril JM (2011) Native plant communities in an abandoned Pb–Zn mining area of Northern Spain: implications for phytoremediation and germplasm preservation. Int J Phytoremediat 13:256–270

    Article  CAS  Google Scholar 

  • Branzini A, Santos González R, Zubillaga M (2012) Absorption and translocation of copper, zinc and chromium by Sesbania virgata. J Environ Manage 102:50–54

    Article  CAS  Google Scholar 

  • Chen GC, Liu ZK, Zhang JF, Owens G (2012) Phytoaccumulation of copper in willow seedlings under different hydrological regimes. Ecol Eng 44:285–289

    Article  Google Scholar 

  • Chipeng FK, Hermans C, Colinet G, Faucon MP, Ngongo M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant Soil 328:235–244

    Article  CAS  Google Scholar 

  • Ciscato M, Valcke R, Van Loven K, Clijsters H, Navari-Izzo F (1997) Effects of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity. Physiol Plant 100:901–908

    Article  CAS  Google Scholar 

  • Dasgupta-Schubert N, Barrera MG, Alvarado CJ, Castillo O, Zaragoza EM, Alexander S, Landsberger S, Robinson S (2011) The uptake of copper by Aldama dentata: ecophysiological response, its modeling, and the implication for phytoremediation. Water Air Soil Pollut 220:37–55

    Article  CAS  Google Scholar 

  • Decaria L, Bertini I, Williams RJP (2011) Copper proteomes, phylogenetics and evolution. Metallomics 3:56–60

    Article  CAS  Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2012) Biotechnological approaches for phytoremediation. Plant Biotechnology and Agriculture, Elsevier: Amsterdam, Netherlands, pp 309–328

  • Fitz WJ, Wenzel WW (2002) Arsenic transformation in the soil–rhizosphere–plant system, fundamentals and potential application of phytoremediation. J Biotechnol 99:259–278

    Article  CAS  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2003) Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72

    Article  Google Scholar 

  • Gratão PL, Polle A, Lea PJ (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Gunstone FD (1992) Gamma linolenic acid—occurrence and physical and chemical properties. Prog Lipid Res 3l:145–161

    Article  Google Scholar 

  • Harris D, Rashid A, Miraj G, Arif M, Shah H (2007) ‘On-farm’ seed priming with zinc sulphate solution—a cost-effective way to increase the maize yields of resource-poor farmers. Field Crop Res 102:119–127

    Article  Google Scholar 

  • Itoh S, Taketomi A, Harimoto N, Tsujita E, Rikimaru T, Shirabe K, Shimada M, Maehara Y (2010) Antineoplastic effects of gamma linolenic acid on hepatocellular carcinoma cell lines. J Clin Biochem Nutr 47:81–90

    Article  CAS  Google Scholar 

  • Kucharski R, Sas-Nowosielska A, Małkowski E, Japenga J, Kuperberg JM, Pogrzeba M, Krzyzak J (2005) The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil 273:291–305

    Article  CAS  Google Scholar 

  • Lei DM, Duan CQ (2008) Restoration potential of pioneer plants growing on lead–zinc mine tailings in Lanping, southwest China. J Environ Sci 20:1202–1209

    Article  CAS  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    Article  CAS  Google Scholar 

  • Li XH, Zhou QX, Wei SH (2012) Inifiation of cadmium-excluding welsh onion (Allium fistulosum L.) cultivars and their mechanisms of low cadmium accumulation. Environ Sci Pollut Res 19:1773–1780

    Article  CAS  Google Scholar 

  • Lou LQ, Shen ZG, Li XD (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120

    Article  CAS  Google Scholar 

  • Marrs RH, Bannister P (1978) The adaptation of Calluna vulgaris (L.) Hull to contrasting soil types. New Phytol 81:753–761

    Article  CAS  Google Scholar 

  • Mendez MO, Glenn ER, Maier RM (2007) Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. J Environ Qual 36:245–253

    Article  CAS  Google Scholar 

  • Monni S, Salemaa M, White C, Tuittila E, Huopalainen M (2000) Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu–Ni smelter, in southwest Finland. Environ Pollut 109:211–219

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part2. Am. Soc. Agron, Madison, pp 539–580

    Google Scholar 

  • Nouri J, Khorasani N, Lorestani B, Karami M, Hassani AH, Yousefi N (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci 59:315–323

    Article  CAS  Google Scholar 

  • Novo LAB, Covelo EF, González L (2013) The potential of Salvia verbenaca for phytoremediation of copper mine tailings amended with technosol and compost. Water Air Soil Pollut 224:1513

    Article  Google Scholar 

  • Numata M (1966) Some remarks on the method of measuring vegetation. Bull Mar Lab Chiba Univ 8:71–77

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL et al (eds) Methods of soil analysis. Part 2, 2nd edn. ASA and SSA, Madison, pp 403–430

    Google Scholar 

  • Ottenhof CJM, Faz Cano A, Arocena JM, Nierop KGJ, Verstraten JM, van Mourik JM (2007) Soil organic matter from pioneer species and its implications to phytostabilization of mined sites in the Sierrade Cartagena (Spain). Chemosphere 69:1341–1350

    Article  CAS  Google Scholar 

  • Ouzounidou G, Ciamporova M, Moustakas M (1995) Responses of maize (Zea mays L.) plants to copper stress: I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176

    Article  CAS  Google Scholar 

  • Pérez-de-Mora A, Madejón P, Burgos P, Cabrera F, Lepp NW, Madejón E (2011) Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks. Environ Pollut 159:3018–3027

    Article  Google Scholar 

  • Ravet K, Danford FL, Dihle A, Pittarello M, Pilon M (2011) Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integratedmolecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves. Plant Physiol 157:1300–1312

    Article  CAS  Google Scholar 

  • Ruiz Olivares A, Carrillo-Gonzalez R, Gonzalez-Chavez MCA, Hernández RMS (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manage 114:316–323

    Article  CAS  Google Scholar 

  • Sandra AB, Cynthia BM, Dick LA (1998) Gamma-linolenic acid levels of native species of evening primrose (Oenothera). HortScience 33:518

    Google Scholar 

  • Sharma V, Yadav S (2012) Cognitive enhancing activity of docosahexaenoic acid and gamma-linolenic acid in lead induced amnesia. Bull Chem Pharm Bull 2:109–111

    Google Scholar 

  • Sheldrick BH, Wang C (1993) Particle size distribution. Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis, pp 499–511

    Google Scholar 

  • Shi X, Zhang XL, Chen GC, Chen Y, Wang L, Shan XQ (2011) Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. J Environ Sci 23:266–274

    Article  CAS  Google Scholar 

  • Tan KH (1995) Environmental soil science. Marcel Dekker, New York

    Google Scholar 

  • Tang SR, Wilke BM, Huang CY (1999) The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China. Plant Soil 209:225–232

    Article  CAS  Google Scholar 

  • Thomas SR, Neuzil J, Stocker R (1996) Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Arterioscl throm vas 16:687–696

    Article  CAS  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Bioch 53:33–39

    Article  CAS  Google Scholar 

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    Article  CAS  Google Scholar 

  • Truong PNV, Foong YK, Hung YT (2010) Phytoremediation of heavy metal contaminated soils and water using vetiver grass. Environ Bioneg 11:233–275

    CAS  Google Scholar 

  • Vázquez S, Agha R, Granado A, Sarro MJ, Esteban E, Peñalosa JM, Carpena RO (2006) Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air Soil Poll 177:349–365

    Article  Google Scholar 

  • Verma JP, Singh V, Yadav J (2011) Effect of copper sulphate on seed germination, plant growth and peroxidase activity of mung bean (Vigna radiata). Int J Exp Bot 7:200–204

    Article  CAS  Google Scholar 

  • Wang J, Guo YW, Gao JQ, Jin XD, Wang ZQ, Wang BX, Li K, Li Y (2011) Detection and comparison of reactive oxygen species (ROS) generated by chlorophyllin metal (Fe, Mg and Cu) complexes under ultrasonic and visible-light irradiation. Ultrason Sonochem 18:1028–1034

    Article  CAS  Google Scholar 

  • Wei L, Cl L, Li XD, Shen ZG (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L. Arch Environ Con Tox 55:238–246

    Article  CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Wu JP, Guan YT, Zhang Y, Luo YJ, Zhi H, Chen SJ, Mai BX (2011) Several current-use, non-PBDE brominated flame retardants are highly bioaccumulative: evidence from field determined bioaccumulation factors. Environ Int 37:210–215

    Article  CAS  Google Scholar 

  • Xia Y, Qi Y, Yuan YX, Wang GP, Cui J, Chen YH, Zhang HX, Shen ZG (2012) Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. J Hazard Mater 233–234:65–71

    Article  Google Scholar 

  • Xian X (1989) Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil 113:257–264

    Article  CAS  Google Scholar 

  • Yaakoubi H, Samson G, Ksontini M, Chaibi W (2010) Localized increases of polyphenol concentration and antioxidant capacity in relation to the differential accumulations of copper and cadmium in roots and in shoots of sunflower. Botany 88:901–911

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou O, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Zaidul ISM, Norulaini NNA, Omar AKM, Smith RL Jr (2006) Supercritical carbon dioxide (SC-CO2) extraction and fractionation of palm kernel oil from palm kernel as cocoa butter replacers blend. J Food Eng 73:210–216

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Crosland AR (1994) Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry (ICP-AEC). Commun Soil Sci Plant Anal 25:407–418

    Article  CAS  Google Scholar 

  • Zheng YB, Wang LP, Cayanan DF, Dixon M (2010) Greenhouse cucumber growth and yield response to copper application. HortScience 45:771–774

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Natural Science Foundation of Jiangsu Province, China (BK2010064), the Social Development Foundation of Jiangsu Province, China (BE2011781), the National Natural Science Foundation of China (21277072), the Joint Funds of the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, China (NSFC-GDNSF U1133004) and the Fundamental Research Funds for the Central Universities (KYT201158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahua Chen.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, P., Wang, T., Liu, Y. et al. Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites. Environ Sci Pollut Res 21, 631–640 (2014). https://doi.org/10.1007/s11356-013-1899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1899-z

Keywords

Navigation