Environmental Science and Pollution Research

, Volume 21, Issue 2, pp 1548–1563 | Cite as

Uranyl–water-containing complexes: solid-state UV-MALDI mass spectrometric and IR spectroscopic approach for selective quantitation

Research Article


Since primary environmental concept for long storage of nuclear waste involved assessment of water in uranium complexes depending on migration processes, the paper emphasized solid-state matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) and IR spectroscopic determination of UO2(NO3)2·6H2O; UO2(NO3)2·3H2O, α-, β-, and γ-UO3 modifications; UO3·xH2O (x = 1 or 2); UO3·H2O, described chemically as UO2(OH)2, β- and γ-UO2(OH)2 modifications; and UO4·2H2O, respectively. Advantages and limitation of vibrational spectroscopic approach are discussed, comparing optical spectroscopic data and crystallographic ones. Structural similarities occurred in α–γ modifications of UO3, and UO2(OH)2 compositions are analyzed. Selective speciation achieved by solid-state mass spectrometry is discussed both in terms of its analytical contribution for environmental quality assurance and assessment of radionuclides, and fundamental methodological interest related the mechanistic complex water exchange of UO3·H2O forms in the gas phase. In addition to high selectivity and precision, UV-MALDI-MS, employing an Orbitrap analyzer, was a method that provided fast steps that limited sample pretreatment techniques for direct analysis including imaging. Therefore, random and systematic errors altering metrology and originating from the sample pretreatment stages in the widely implemented analytical protocols for environmental sampling determination of actinides are significantly reduced involving the UV-MALDI-Orbitrap-MS method. The method of quantum chemistry is utilized as well to predict reliably the thermodynamics and nature of U–O bonds in uranium species in gas and condensed phases.


Uranium water-containing complexes Mass spectrometry IR spectroscopy Quantum chemistry 

Supplementary material

11356_2013_1892_MOESM1_ESM.doc (142 kb)
ESM 1(DOC 142 kb)


  1. Allen G, Tempest P (1986) Ordered defects in the oxides of uranium. Proc R Soc Lond A 406:325–344CrossRefGoogle Scholar
  2. Bannister M, Taylor J (1970) The crystal structure and anisotropic thermal expansion of p-uranyl dihydroxide, β-UO2(OH)2. Acta Cryst B26:1775–1781CrossRefGoogle Scholar
  3. Beauchamp J (1976) Properties and reactions of uranium hexafluoride by ion cyclotron resonance spectroscopy. J Chem Phys 64:718CrossRefGoogle Scholar
  4. Beer S, Berryman O, Ajami D, Rebek J Jr (2010) Encapsulation of the uranyl dication. Chem Sci 1:43–47CrossRefGoogle Scholar
  5. Berthet J, Nierlich M, Ephritikhine M (2003) A novel coordination geometry for the uranyl ion. Rhombohedral uranium environment in [UO2(OTf)2(bpy)2] and [UO2(phen)3][OTf]2, Chem Comm 1660–1661Google Scholar
  6. Choi J, Lamshoeft M, Zühlke S, Park K, Shim J, Spiteller M (2012) Determination of sedatives and adrenergic blockers in blood meal using accelerated solvent extraction and Orbitrap mass spectrometry. J Chromatogr A 1260:111–119CrossRefGoogle Scholar
  7. Cole R (Ed.) (2010) Electrospra and MALDI mass spectrometry, Wiley, New York, 2nd Ed., pp. 1–613.Google Scholar
  8. Chien W, Anbalagan V, Zandler M, Van Stipdonk M, Hanna D, Gresham G, Groenewold G (2004) Intrinsic hydration of monopositive uranyl hydroxide, nitrate, and acetate cations. J Am Soc Mass Spectrom 15:777–783CrossRefGoogle Scholar
  9. Compton R (1977) On the formation of positive and negative ions in gaseous UF6 citation. J Chem Phys 66:4478CrossRefGoogle Scholar
  10. Cornett D, Frappier S, Caprioli R (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem 80:5648–5653CrossRefGoogle Scholar
  11. Crawford C, Fugate G, Cable-Dunlap P, Walla N, Siems W, Hilla H (2013) The novel analysis of uranyl compounds by electrospray–ion mobility–mass spectrometry, http://dx.doi.org/10.1016/j.ijms.2012.08.004
  12. Dalton 2011 Program Package; http://www.daltonprogram.org/download.html
  13. Debets P (1966) The Structure of β-UO3. Acta Cryst 21:589–593CrossRefGoogle Scholar
  14. Denning R (1992) Electronic structure and bonding in actinyl ions, structure and bondin. Springer, Berlin, pp 215–276Google Scholar
  15. Denning R (2007) Electronic structure and bonding in actinyl ions and their analogs. J Phys Chem A 111:4125–4143CrossRefGoogle Scholar
  16. Del Carmen MM, Marcalo J, Russo N, Gibson J (2010) Gas-phase reactions of uranate ions, UO2 , UO3 UO4 , and UO4H, with methanol: a convergence of experiment and theory. Inorg Chem 49:3836–3850CrossRefGoogle Scholar
  17. Dau P, Su J, Liu H, Huang D, Li J, Wang L (2012a) Photoelectron spectroscopy and the electronic structure of the uranyl tetrachloride dianion: UO2Cl4 2−. J Chem Phys 137:064315CrossRefGoogle Scholar
  18. Dau P, Su J, Liu H, Liu J, Huang D, Li J, Wang L (2012b) Observation and investigation of the uranyl tetrafluoride dianion (UO2F4 2−) and its solvation complexes with water and acetonitrile. Chem Sci 3:1137–1146CrossRefGoogle Scholar
  19. De Bolle F, Moschenborn W (1981) Small system errors of chemical origin in UF isotope measurements during the conversion of the UF6 into UO3 and the reconversion of the UO3 into UF6. Int J Mass Spectrom Ion Phys 38:91–96CrossRefGoogle Scholar
  20. Environmental Remediation of Uranium Production Facilities (2005) a joint report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. OECD Publ, Paris, pp pp. 1–323Google Scholar
  21. European Commission–Directorate General for the Energy-Directorate–Nuclear Safety and Fuel Cycle Radiation Protection, Luxembourg, 2011, pp. 1–13Google Scholar
  22. Esaka F, Lee C, Magara M, Kimura T (2012) Fission track–secondary ion mass spectrometry as a tool for detecting the isotopic signature of individual uranium containing particles. Anal Chim Acta 721:122–128CrossRefGoogle Scholar
  23. Engivkann R, de Wolff P (1963) The crystal structure of γ-UO3. Acta Cryst 16:993–996CrossRefGoogle Scholar
  24. Frenzel W, Steiner R (1991), Schnellmethgoden zur analyse von plutonium und anderen aktiniden im umweltproben, Fachverband fuer Strahlenschutz e.V., Publikationsreihe, Fortschritte im Strahlenschutz, Verlag TUEV Rheinland, Köln, pp. 1–95.Google Scholar
  25. Frisch M et al (2009) Gaussian 09. Gaussian, Pittsburgh PA, 2009Google Scholar
  26. Geckeis H, Lützenkirchen J, Polly R, Rabung T (2013) Mineral–water interface reactions of actinides. Chem Rev 113(2):1016–1062Google Scholar
  27. Greaves C, Fender B (1972) The structure of α-UO3 by neutron and electron diffraction. Acta Cryst B28:3609–3614CrossRefGoogle Scholar
  28. Gorshkov N, Izosimov I, Kazimov A, Kolychev S, Kudryashev N, Mashirov L, Rimskii-Korsakov A, Firsin N (2001) The role of hydroxide ions in reduction of plutonyl ion stimulated by nitrogen laser radiation (337.1 nm). Radiochem 43:360–363CrossRefGoogle Scholar
  29. Gresham G, Dinescu A, Benson M, Van Stipdonk M, Groenewold G (2011) Investigation of uranyl nitrate ion pairs complexed with amide ligands using electrospray ionization ion trap mass spectrometry and density functional theory. J Phys Chem A 115:3497–3508CrossRefGoogle Scholar
  30. Gross J (2011) Mass spectrometry, a textbook, 2nd edn. Springer, Berlin, pp pp. 1–753CrossRefGoogle Scholar
  31. Guerrero J, Gajdosova D, Havel J (2001) Uranium oxide clusters by laser desorption ionization during MALDI-TOF MS analysis of uranium (VI). J Radioanal Nucl Chem 249:139–143CrossRefGoogle Scholar
  32. Herebian D, Choi J, Abd El-Aty A, Shim J, Spiteller M (2009) Metabolite analysis in Curcuma domestica using various GC–MS and LC–MS separation and detection techniques. Biomed Chromatogr 23:951–965CrossRefGoogle Scholar
  33. Hocking H, Burggraf L, Duan X, Gardella J Jr, Yatzor B, Schuler W (2013) Composition of uranium oxide particles related to TOF-SIMS ion distributions. Surf Interface Anal 45:545–548CrossRefGoogle Scholar
  34. Guimbretiere G, Desgranges L, Canizares A, Carlot G, Caraballo R, Jegou C, Duval F, Raimboux N, Ammar M, Simon P (2012) Determination of in-depth damaged profile by Raman line scan in a pre-cut He21 irradiated UO2. Appl Phys Lett 100:251914CrossRefGoogle Scholar
  35. Han J, Goncharov V, Kaledin L, Komissarov A, Heaven M (2004) Electronic spectroscopy and ionization potential of UO2 in the gas phase. J Chem Phys 120:5155–5163CrossRefGoogle Scholar
  36. Harsha S, Grischkowsky D (2010) Terahertz (far-infrared) characterization of tris(hydroxymethyl)aminomethane using high-resolution waveguide THz-TDS. J Phys Chem A 114:3489–3494CrossRefGoogle Scholar
  37. Hildenbrand D (1977) Thermochemistry of gaseous UF5 and UF4. J Chem Phys 66:4788CrossRefGoogle Scholar
  38. He H, Qin Z, Shoesmith D (2010) Characterizing the relationship between hyperstoichiometry, defect structure and local corrosion kinetics of uranium dioxide. Electrochim Acta 56:53–60CrossRefGoogle Scholar
  39. He H, Wang P, Allred D, Majewski J, Wilkerson M, Rector K (2012) Characterization of chemical speciation in ultrathin uranium oxide layered films. Anal Chem 84:10380–10387CrossRefGoogle Scholar
  40. Hillenkamp F, Peter-Katalinic J (2007) (Eds.), MALDI–MS: a practical guide to instrumentation, methods and application, Wiley, New York, 2007, pp. 1–345.Google Scholar
  41. Hu H, Qiu Y, Xiong X, Schwarz W, Li J (2012) On the maximum bond multiplicity of carbon: unusual C ≡ U quadruple bonding in molecular CUO. Chem Sci 3:2786–2796CrossRefGoogle Scholar
  42. Isselhardt B, Savina M, Knight K, Pellin M, Hutcheon I, Prussin S (2011) Improving precision in resonance ionization mass spectrometry: influence of laser bandwidth in uranium isotope ratio measurements. Anal Chem 83:2469–2475CrossRefGoogle Scholar
  43. Ivanova B, Spiteller M (2012a) A quantitative solid-state Raman spectroscopic method for control of fungicides. Analyst 137:3355–3364CrossRefGoogle Scholar
  44. Ivanova B, Spiteller M (2012b) Matrix-assisted laser desorption/ionization mass spectrometric analysis of herbicides in dication-containing organic crystals. Anal Methods 4:4360–436CrossRefGoogle Scholar
  45. Ivanova B, Spiteller M (2010a) Noncentrosymmetric crystals with marked nonlinear optical properties. J Phys Chem A 114:5099–5103CrossRefGoogle Scholar
  46. Ivanova B, Spiteller M (2010b) On the application of the organic barbiturates as NLO materials. Cryst Growth Des 10:2470–2474CrossRefGoogle Scholar
  47. Jung H, Boyanov M, Konishi H, Sun Y, Mishra B, Kemner K, Roden E, Xu H (2012) Redox behavior of uranium at the nanoporous aluminum oxide–Water interface: implications for uranium remediation. Environ Sci Technol 46:7301–7309CrossRefGoogle Scholar
  48. Jennings K, Kemp T, Read P (1989) Cluster formation in the fast atom bombardment (FAB) mass spectra of dioxouranium(VI) dinitrate and diacetate. Inorg Chim Acta 157:157–159CrossRefGoogle Scholar
  49. Kato R, Rolfe J (1967) Vibration frequencies of NO2 and NO3 ions in KBr crystals. J Chem Phys 47:1901–1910CrossRefGoogle Scholar
  50. Kalkowski G, Kaindl G, Brewer W, Krone W (1987) Near-edge x-ray-absorption fine structure in uranium compounds. Phys Rev B 35:2667–2677CrossRefGoogle Scholar
  51. Kim K, Jung E, Lee K, Cho H, Lee E, Chung D (2012) Evaluation of the behavior of uranium peroxocarbonate complexes in Na–U(VI)–CO3–OH–H2O2 solutions by Raman spectroscopy. J Phys Chem A 116:12024–12031CrossRefGoogle Scholar
  52. Kraiema M, Richtera S, Erdmann N, Kuhna H, Hedberg M, Aregbe Y (2012) Characterizing uranium oxide reference particles for isotopic abundances and uranium mass by single particle isotope dilution mass spectrometry. Anal Chim Acta 748:37–44CrossRefGoogle Scholar
  53. Koleva B, Kolev T, Spiteller M (2008a) Determination of cephalosporins in solid binary mixtures by polarized IR- and Raman spectroscopy. J Pharmaceut Biomed Anal 48:201–204CrossRefGoogle Scholar
  54. Koleva B, Kolev T, Tsalev D, Spiteller M (2008b) Determination of phenacetin and salophen analgetics in solid binary mixtures with caffeine by infrared linear dichroic and Raman spectroscopy. J Pharmaceut Biomed Anal 46:267–273CrossRefGoogle Scholar
  55. Koleva B, Kolev T, Simeonov V, Spassov T, Spiteller M (2008c) Linearly polarized IR-spectroscopy of partially oriented solids as a colloid suspension in nematic host: a tool for spectroscopic and structural elucidation of the embedded chemicals. J Incl Phenom Macrocycl Chem 61:319–333CrossRefGoogle Scholar
  56. Koleva B, Kolev T, Lamshöft M, Spiteller M (2008d) Synthesis, spectroscopic analysis and structure deduction of gold(III), palladium(II) and platinum(II) complexes with the tripeptide glycyl-l-phenylalanyl-glycine. Trans Met Chem 33:911–919CrossRefGoogle Scholar
  57. Kelley C (1999) Iterative methods for optimization, SIAM Frontiers in Applied Mathematics, 18Google Scholar
  58. Knope K, Soderholm L (2013) Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem Rev 113:944–994CrossRefGoogle Scholar
  59. Khatib-Shahidi S, Andersson M, Herman J, Gillespie T, Caprioli R (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78:6448–6456CrossRefGoogle Scholar
  60. Kahr M, Abney K, Olivaresc J (2001) Analysis of solid uranium samples using a small mass spectrometer. Spectrochimica Acta Part B 56:1127–1132CrossRefGoogle Scholar
  61. Kleinschmidt P, Hildenbrand D (1979) Thermodynamics of the dimerization of gaseous UF5. J Chem Phys 71:196CrossRefGoogle Scholar
  62. Lam O, Heinemann F, Meyer K (2011) Activation of elemental S, Se and Te with uranium(III): bridging U–E–U (E ¼ S, Se) and diamond-core complexes U–(E)2–U (E ¼ O, S, Se, Te). Chem Sci 2:1538–1547CrossRefGoogle Scholar
  63. Lamshoeft M, Grobe N, Spiteller M (2011) Picomolar concentrations of morphine in human urine determined by dansyl derivatization and liquid chromatography–mass spectrometry. J Chromatogr B 879:933–937CrossRefGoogle Scholar
  64. Liang B, Hunt R, Kushto G, Andrews L (2005) Reactions of laser-ablated uranium atoms with H2O in excess argon: a matrix infrared and relativistic DFT investigation of uranium oxyhydrides. Inorg Chem 44:2159–2168CrossRefGoogle Scholar
  65. Lipp M, Jenei Z, Klepeis J, Evans W (2007) Raman investigation of the uranium compounds U3O8, UF4, UH3 and UO3 under pressure at room temperature, Lawrence Livermore National Laboratory, LLNL-TR-522251, 1–18.Google Scholar
  66. Madsen K, Nielsen H, Tingleff O (2004) Informatics and mathematical modelling, 2nd edn. DTU, DelhiGoogle Scholar
  67. Massart D, Vandeginste B, Deming S, Michotte Y, Kaufman L (1988) Chemometrics, vol 2. Elsevier, Amsterdam, pp pp. 1–488Google Scholar
  68. Manna J, Reyzer M, Latham J, Weaver C, Marnett L, Caprioli R (2011) High-throughput quantification of bioactive lipids by MALDI mass spectrometry: application to prostaglandins. Anal Chem 83:6683–6688CrossRefGoogle Scholar
  69. Monge M, Harris G, Dwivedi P, Fernandez F (2013) Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev 113:2269–2308CrossRefGoogle Scholar
  70. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900CrossRefGoogle Scholar
  71. Mennucci B, Tomasi J, Cammi R, Cheeseman J, Frisch M, Devlin F, Gabriel S, Stephens P (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113CrossRefGoogle Scholar
  72. McGlynn S, Smith J, Neely W (1961) Electronic structure, spectra, and magnetic properties of oxycations. III. Ligation effects on the infrared spectrum of the uranyl ion. J Chem Phys 35:105–116CrossRefGoogle Scholar
  73. Norris J, Caprioli R (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113:2309–2342CrossRefGoogle Scholar
  74. Nebbioso A, Piccolo A, Spiteller M (2010) Limitations of electrospray ionization in the analysis of a heterogeneous mixture of naturally occurring hydrophilic and hydrophobic compounds. Rapid Commun Mass Spectrom 24:3163–3170CrossRefGoogle Scholar
  75. Nguyen-Trung C, Begun G, Palmer D (1992) Aqueous uranium complexes. 2. Raman spectroscopic study of the complex formation of the dioxouranium(VI) ion with a variety of inorganic and organic ligands. Inorg Chem 31:5280–5287CrossRefGoogle Scholar
  76. Oppenheim K, Korter T, Melinger J, Grischkowsky D (2010) Solid-state density functional theory investigation of the terahertz spectra of the structural isomers 1,2-dicyanobenzene and 1,3-dicyanobenzene. J Phys Chem A 114:12513–12521CrossRefGoogle Scholar
  77. Park J, Choi I, Park S, Lee M, Song K (2011) A correction method for the peak tailing backgrounds for accurate isotope ratio measurements of uranium in ultra trace levels using thermal ionization mass spectrometry. Bull Korean Chem Soc 32:4327–4331CrossRefGoogle Scholar
  78. Pan Q, Schreckenbach G (2010) Binuclear hexa- and pentavalent uranium complexes with a polypyrrolic ligand: a density functional study of water- and hydronium-induced reactions. Inorg Chem 49:6509–6517CrossRefGoogle Scholar
  79. Plasil J, Buixaderas E, Cejka J, Sejkora J, Jehlicka J, Novak M (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U–O stretching regions. Anal Bioanal Chem 397:2703–2715CrossRefGoogle Scholar
  80. Petiau J, Calas G, Petitmaire D, Bianconi A, Benfatto M, Marcelli A (1986) Delocalized versus localized unoccupied 5f states and the uranium site structure in uranium oxides and glasses probed by x-ray-absorption near-edge structure. Phys Rev B 34:7350–7361CrossRefGoogle Scholar
  81. Perez-Bendito D, Rubio S (1999) Environmental analytical chemistry, vol XXXII, Wilson and Wilson's comprehensive analytical chemistry. Elsevier, Amsterdam, pp pp.1–842Google Scholar
  82. Pasilis S, Blumenfeld A (2011) Effect of nitrate, perchlorate, and water on uranyl(VI) speciation in a room-temperature ionic liquid: a spectroscopic investigation. Inorg Chem 50:8302–8307CrossRefGoogle Scholar
  83. Qiu J, Burns P (2013) Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem Rev 2013(113):1097–1120CrossRefGoogle Scholar
  84. Roof R, Cromer J, Larson A (1964) The crystal structure of uranyl fihydroxide, UO2(OH)2 *. Acta Cryst 17:701–705CrossRefGoogle Scholar
  85. Richter S, Kuehn H, Truyens J, Kraiem M, Aregbea Y (2013) Uranium hexafluoride (UF6) gas source mass spectrometry for certification of reference materials and nuclear safeguard measurements at IRMM. J Anal At Spectrom 28:536–548CrossRefGoogle Scholar
  86. Shuvalov R, Burns P (2003) A monoclinic polymorph of uranyl dinitrate trihydrate, [UO2(NO3)2(H2O)2]·H2O. Acta Cryst C59:i71–i73Google Scholar
  87. Siegel S, Hoekstra H, Gebert E (1972) The structure of γ-uranyl dihydroxide, UO2(OH)2 *. Acta Cryst B28:3469–3473CrossRefGoogle Scholar
  88. Stanley F (2012) A beginner's guide to uranium chronometry in nuclear forensics and safeguards. J Anal At Spectrom 27:1821–1830CrossRefGoogle Scholar
  89. Saprygina A, Elistratova O, Kalashnikova V, Kulika I, Rodicheva I (2011) Mass spectrometry determination of the isotopic composition of uranium hexafluoride. J Anal Chem 66:1385–1391CrossRefGoogle Scholar
  90. Spiteller M (1985) Extraction of soil organic matter by supercritical fluids. Org Geochem 8:111–113CrossRefGoogle Scholar
  91. Spiteller M (1987) Isolation and characterisation of dissolved organic carbon from natural and lysimeter waters by ultrafiltration. Sci Tot Environm 62:47–54CrossRefGoogle Scholar
  92. Stoliker D, Kent D, Zachara J (2011) Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments. Environ Sci Technol 45:8733–8740CrossRefGoogle Scholar
  93. Schlüsener M, Bester K, Spiteller M (2003) Determination of antibiotics such as macrolides, ionophores and tiamulin in liquid manure by HPLC–MS/MS. Anal Bioanal Chem 375:942–947Google Scholar
  94. Toth L, Begun G (1981) Raman spectra of uranyl ion and its hydrolysis products in aqueous HNO3. J Phys Chem 85:547–549CrossRefGoogle Scholar
  95. Stuke M, Wittig C (1981) Multiply charged atomic and molecular ions from laser multiphoton ionization of UF6. Chem Phys Lett 81:168–169CrossRefGoogle Scholar
  96. Stuke M, Reisler H, Wittig C (1981) Monitoring UF6 photodissociation via laser multiphoton ionization. Appl Phys Lett 39:201CrossRefGoogle Scholar
  97. Tretyakova N, Villalta P, Kotapati S (2013) Mass spectrometry of structurally modified DNA. Chem Rev 113:2395–2436CrossRefGoogle Scholar
  98. Vidjayacoumar B, Ilango S, Ray M, Chu T, Kolpin K, Andreychuk N, Cruz C, Emslie D, Jenkins H, Britten J (2012) Rigid NON- and NSN-ligand complexes of tetravalent and trivalent uranium: comparison of U–OAr2 and U–SAr2 bonding. Dalton Trans 41:8175–8189CrossRefGoogle Scholar
  99. Vallet V, Wahlgren U, Grenthe I (2012) Probing the nature of chemical bonding in uranyl(VI) complexes with quantum chemical methods. J Phys Chem A 116:12373–12380CrossRefGoogle Scholar
  100. Van Stipdonk M, Chien W, Bulleigh K, Wu Q, Groenewold D (2006) Gas-phase uranyl–nitrile complex ions. J Phys Chem A 110:959–970CrossRefGoogle Scholar
  101. Walton S, Mitchell D (2013) A novel rapid detection approach for the analysis of radionuclides in environmental samples using graphite MALDI mass spectrometry, J Radioanal Nucl Chem DOI 10.1007/s10967-012-2176-1
  102. Wang D, van Gunsteren W, Chai Z (2012) Recent advances in computational actinoid chemistry. Chem Soc Rev 41:5836–5865CrossRefGoogle Scholar
  103. Weller M, Light M, Gelbrich T (2000) Structure of uranium(VI) oxide dihydrate, UO3·2H2O; synthetic meta-schoepite (UO2)4O(OH)6·5H2O. Acta Cryst B56:577–583CrossRefGoogle Scholar
  104. Yang J, Caprioli R (2011) Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem 83:5728–5734CrossRefGoogle Scholar
  105. Zalazar M, Rayon V, Largo A (2012) On the molecular structure of uranium dicarbide: T-shape versus linear isomers. J Phys Chem A 116:2972–2977CrossRefGoogle Scholar
  106. Zhao Y, Truhlar D (2008a) Density functionals with broad applicability in chemistry. Accts Chem Res 41:157–167CrossRefGoogle Scholar
  107. Zhao Y, Truhlar D (2008b) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Lehrstuhl für Analytische ChemieInstitut für Umweltforschung, Fakultät für Chemie, Universität DortmundDortmundGermany

Personalised recommendations