Skip to main content

Advertisement

Log in

Effects of diethylphthalate and di-(2-ethyl)hexylphthalate on the physiology and ultrastructure of cucumber seedlings

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phthalic acid esters (PAEs) are one kind of persistent organic pollutants. This study was conducted to investigate the effects of diethylphthalate (DEP) and di(2-ethyl)hexylphthalate (DEHP) with different concentrations (0, 30, 50, 100, and 200 mg L−1) on early seedling growth of Cucumis sativus L. Physiological, biochemical, and ultrastructure of seedling leaves were examined for 7-day exposure. The three antioxidant enzymes’ activities was stimulated at low-DEP treatments and decreased under higher levels (>200 mg L−1) compared to the controls. Furthermore, MDA and H2O2 gradually enhanced with the elevation of DEP and DEHP concentration. Significant impact on the chloroplast and mitochondrion was visible, possibly as a consequence of free radical generation. DEP induced bigger and more starch grains in chloroplasts than DEHP. This study concluded that the effects of DEP and DEHP on cucumber seedlings represented the adverse impacts of DEP and DEHP on the ecosystem and agricultural production. The environmental harm caused by DEP was severer than DEHP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

PAEs:

Phthalic esters

DEP:

Diethylphthalate

DEHP:

Di(2-ethyl)hexylphthalate

SOD:

Superoxide

POD:

Peroxidase

CAT:

Catalase

MDA:

Malondialdehyde

H2O2 :

Hydrogen peroxide

PBS:

Phosphate-buffered saline solution

ROS:

Reactive oxygen species

References

  • Adibi JJ, Whyatt RM, Williams PL, Calafat AM, Camann D, Herrick R, Nelson H, Bhat HK, Perera FP, Silva MJ, Hauser R (2008) Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Persp 116:467–473

    CAS  Google Scholar 

  • Aebi H (1984) Catalase invitro. Methods Enzymol 105:121–126

    CAS  Google Scholar 

  • Ahammed GJ, Yuan HL, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2012) Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86:546–555

    Article  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK (2008) 28-Homobrassinolide alleviates oxidative stress in salt treated maize (Zea mays L.) plants. Braz J Plant Physiol 20:153–157

    Article  CAS  Google Scholar 

  • Balafas D, Shaw KJ, Whitfield FB (1999) Phthalate and adipate esters in Australian packaging materials. Food Chem 65:279–287

    Article  CAS  Google Scholar 

  • Bouzon ZL, Ferreira EC, dos Santos R, Scherner F, Horta PA, Maraschin M, Schmidt EC (2012) Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro. Protoplasma 249:637–650

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  Google Scholar 

  • Chen L, Liu X, Zhang X, Liu S, Wei J, Xu G (2012a) Response characteristics of seed germination and seedling growth of Acorus tatarinowii under diesel stress. Plant Soil 361:1–9

    Article  Google Scholar 

  • Chen Y, Wu C, Zhang H, Lin Q, Hong Y, Luo Y (2012b) Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China. Environ Earth Sci 1–9

  • Clausen PA, Hansen V, Gunnarsen L, Afshari A, Wolkoff P (2004) Emission of di-2-ethylhexylphthalate from PVC flooring into air and uptake in dust: Emission and sorption experiments in FLEC and CLIMPAQ. Environ Sci Technol 38:2531–2537

    Article  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu C, Chétrit P, Foyer CH, de Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226

    Article  CAS  Google Scholar 

  • Eifediyi EK, Remison SU (2010) Growth and yield of cucumber (Cucumis sativus L.) as influenced by farmyard manure and inorganic fertilizer. J Plant Breed Crop Sci 22:16–220

    Google Scholar 

  • Fromme H, Lahrz T, Piloty M, Gebhart H, Oddoy A, Ru¨den H (2004) Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 14:188–195

    Article  CAS  Google Scholar 

  • Fromme H, Gruber L, Schlummer M, Wolz G, Angerer J, Bo¨hmer S, Mayer R, Liebl B, Bolte G (2007) Intake of phthalates and di(2-ethylhexyl)adipate: results of the integrated exposure assessment survey based on duplicate diet samples and biomonitoring data. Environ Int 33:1012–1020

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidant enzyme activities, praline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Ghorpade N, Mehta V, Khare M, Sinkar P, Krishnan S, Rao CV (2002) Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala. Environ Saf Ecotoxicol Environ Saf 53:255–258

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Reis SK (1977) Superoxide dismutases: I. occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Gomez-Hens A, Aguilar-Caballos MP (2003) Social and economic interest in the control of phthalic acid esters. Trends Anal Chem 22:847–857

    Article  CAS  Google Scholar 

  • Gunnarsson D, Leffler P, Ekwurtzel E, Martinsson G, Liu K, Selstam G (2008) Mono-(2-ethylhexyl) phthalate stimulates basal steroidogenesis by a cAMP-independent mechanism in mouse gonadal cells of both sexes. Reproduction 135:693–703

    Article  CAS  Google Scholar 

  • Hauser R, Meeker JD, Duty S, Silva MJ, Calafat AM (2006) Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiol 17:682–691

    Article  Google Scholar 

  • Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61:521–535

    Article  CAS  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  Google Scholar 

  • Inoue K, Kawaguchi M, Yamanaka R, Higuchi T, Ito R, Saito K, Nakazawa H (2005) Evaluation and analysis of exposure levels of di(2-ethylhexyl)phthalate from blood bags. Clin Chim Acta 358:159–166

    Article  CAS  Google Scholar 

  • Koch HM, Angerer J, Drexler H, Eckstein R, Weisbach V (2005) Di(2-ethylhexyl)phthalate (DEHP) exposure of voluntary plasma and platelet donors. Int J Hyg Environ Health 208:489–498

    Article  CAS  Google Scholar 

  • Kumar S, Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2012) Dunphy, role for Rif1 in the checkpoint response to damaged DNA in Xenopus egg extracts. Cell Cycle 11:1183–1194

    Article  CAS  Google Scholar 

  • Lee KY, Shibutani M, Takagi H, Kato N, Takigami S, Uneyama C, Hirose M (2004) Diverse developmental toxicity of di-n-butyl phthalate in both sexes of rat offspring after maternal exposure during the period from late gestation through lactation. Toxicology 203:221–238

    Article  CAS  Google Scholar 

  • Li CL, Xu HM, Xu J, Chun XY, Ni DJ (2011) Effects of aluminum on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiol Plant 33:973–978

    Article  CAS  Google Scholar 

  • Liang P, Zhang L, Peng L, Li Q, Zhao E (2010) Determination of phthalate esters in soil samples by microwave assisted extraction and high performance liquid chromatography. Bull Environ Contam Toxicol 85:147–151

    Article  CAS  Google Scholar 

  • Liu D, Wang X, Lin Y, Chen Z, Xu H, Wang L (2012a) The effects of cerium on the growth and some antioxidant metabolisms in rice seedlings. Environ Sci Pollut Res Int 19:3282–3291

    Article  CAS  Google Scholar 

  • Liu N, Xu G, Wu MH, He XX, Tang L, Shi WY, Wang L, Shao HY (2012b) Radical-induced destruction of diethyl phthalate in aqueous solution: kinetics, spectral properties, and degradation efficiencies studies. Res Chem Intermed 1–11

  • Luo H, Li H, Zhang X, Fu J (2011) Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology 20:770–778

    Article  CAS  Google Scholar 

  • Ma TT, Christie P, Luo YM, Teng Y (2012) Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site. Environ Geochem Health. doi:10.1007/s10653-012-9508-5

    Google Scholar 

  • Martine B, Marie-Jeanne T, Cendrine D, Fabrice A, Marc C (2013) Assessment of adult human exposure to phthalate esters in the urban centre of Paris (France). Bull Environ Contam Toxicol 90:91–96

    Article  CAS  Google Scholar 

  • Masutomi N, Shibutani M, Takagi H, Uneyama C, Lee KY, Hirose M (2004) Alteration of pituitary hormone-immunoreactive cell populations in rat offspring after maternal dietary exposure to endocrine-active chemicals. Arch Toxicol 78:232–240

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mo CH, Cai QY, Tang SR, Zeng QY, Wu QT (2009) Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. Arch Environ Contam Toxicol 56:181–189

    Article  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    Article  CAS  Google Scholar 

  • Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Devi BS, Yang DC (2012) Interrelationship between calmodulin (CaM) and H2O2 in abscisic acid-induced antioxidant defense in the seedlings of Panax ginseng. Mol Biol Rep 39:7327–7338

    Article  CAS  Google Scholar 

  • Pereira C, Mapuskar K, Rao CV (2008) Effect of diethyl phthalate on rat testicular antioxidant system: a dose dependant toxicity study. Pestic Biochem Phys 90:52–57

    Article  CAS  Google Scholar 

  • Pinhero RG, Rao MV, Paliyath G, Murr DP, Fletcher RA (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol 114:695–704

    Google Scholar 

  • Reboredo F (2012) Zinc compartmentation in Halimione portulacoides (L.) Aellen and some effects on leaf ultrastructure. Environ Sci Pollut Res 19:2644–2657

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Pb induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodrígues-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Russo MV, Notardonato I, Cinelli G, Avino P (2012) Evaluation of an analytical method for determining phthalate esters in wine samples by solid-phase extraction and gas chromatography coupled with ion-trap mass spectrometer detector. Anal Bioanal Chem 402:1373–1381

    Article  CAS  Google Scholar 

  • Santos RW, Schmidt EC, Bouzon ZL (2013) Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium. Protoplasma 250:297–305

    Article  CAS  Google Scholar 

  • Sathyanarayana S, Karr CJ, Lozano P, Brown E, Calafat AM, Liu F, Swan SH (2008) Baby care products: possible sources of infant phthalate exposure. Pediatrics 121:260–268

    Article  Google Scholar 

  • Shinogi Y, Yoshida H, Koizumi T (2003) Basic characteristics on low-temperature carbon products from waste sludge. Adv Environ Res 7:661–665

    Article  CAS  Google Scholar 

  • Singh AR, Lawrence WH, Autian J (1972) Teratogenicity of phthalate esters in rats. J Pharm Sci 61:51–55

    Article  CAS  Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  • Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39:2159–2169

    Article  CAS  Google Scholar 

  • Wang SG, Lin XG, Yin R, Hou YL (2003) Effects of di-n-butyl phthalate on mycorrhizal and non-mycorrhizal cowpea plants. Biol Plant 47:637–639

    Article  CAS  Google Scholar 

  • Wang W, Zhang Y, Wang S, Fan CQ, Xu H (2012) Distributions of phthalic esters carried by total suspended particulates in Nanjing, China. Environ Monit Assess 184:6789–6798

    Article  CAS  Google Scholar 

  • Waters LJ, Leharne SA, Mitchell JC, Hanrahan JP (2007) Determination of micelle/water partition coefficients and associated thermodynamic data for dialkyl phthalate esters. J Therm Anal Calorim 90:283–288

    Article  CAS  Google Scholar 

  • Wensing M, Uhde E, Salthammer T (2005) Plastics additives in the indoor environment-flame retardants and plasticizers. Sci Total Environ 339:19–40

    Article  CAS  Google Scholar 

  • Wormuth M, Scheringer M, Vollenweider M, Hungerbühler K (2006) What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal 26:803–824

    Article  Google Scholar 

  • Wu SN, Yang WH, Yeh CC, Huang HC (2012) The inhibition by di(2-ethylhexyl)-phthalate of erg-mediated K+ current in pituitary tumor (GH3) cells. Arch Toxicol 86:713–723

    Article  CAS  Google Scholar 

  • Yamane K, Taniguchi M, Miyake H (2012) Salinity-induced subcellular accumulation of H2O2 in leaves of rice. Protoplasma 249:301–308

    Article  CAS  Google Scholar 

  • Yin Y, Wang X, Yang L, Sun Y, Guo H (2010) Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene. Ecotoxicology 19:1102–1110

    Article  CAS  Google Scholar 

  • Yiu JC, Tseng MJ, Liu CW (2011) Exogenous catechin increases antioxidant enzyme activity and promotes flooding tolerance in tomato (Solanum lycopersicum L.). Plant Soil 344:213–225

    Article  CAS  Google Scholar 

  • Zeng F, Cui KY, Xie ZY, Wu LN, Luo DL, Chen LX, Lin YJ, Liu M, Sun GX (2009) Distribution of phthalate esters in urban soils of subtropical city, Guangzhou. J Hazard Mater 164:1171–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and 863 Development Program of China (2012AA101405-2), Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (QAK201013), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (2012CJHB001), New Century Excellent Talents in University (NCET-10-0145), Heilongjiang Postdoctoral Fund (LBH-Z12037), and the National Natural Science Foundation of China (31200390).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhang or Lei Wang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, L., Du, N. et al. Effects of diethylphthalate and di-(2-ethyl)hexylphthalate on the physiology and ultrastructure of cucumber seedlings. Environ Sci Pollut Res 21, 1020–1028 (2014). https://doi.org/10.1007/s11356-013-1884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1884-6

Keywords