Skip to main content

Advertisement

Log in

Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale

  • Processes and Environmental Quality in the Yangtze River System
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adki VS, Jadhav JP, Bapat VA (2013) Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ Sci Pollut Res 20:1173–1180

    Article  CAS  Google Scholar 

  • Albers PH, Camardese MB (1993) Effects of acidification on metal accumulation by aquatic plants and invertebrates. 2. Wetlands, ponds and small lakes. Environ Toxicol Chem 12:969–976

    Article  CAS  Google Scholar 

  • Browne R, Lutz D (2010) Lake ecosystem effects associated with top-predator removal due to selenium toxicity. Hydrobiologia 655:137–148

    Article  CAS  Google Scholar 

  • Caldwell EF, Duff MC, Ferguson CE, Coughlin DP, Hicks RA, Dixon E (2012) Bio-monitoring for uranium using stream-side terrestrial plants and macrophytes. J Environ Monitor 14:968–976

    Article  CAS  Google Scholar 

  • Cindrić IJ, Zeiner M, Kröppl M, Stingeder G (2011) Comparison of sample preparation methods for the ICP-AES determination of minor and major elements in clarified apple juices. Microchem J 99:364–369

    Article  Google Scholar 

  • Clabeaux BL, Navarro DA, Aga DS, Bisson MA (2011) Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation. Environ Sci Technol 45:5332–5338

    Article  CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  Google Scholar 

  • Croteau M-N, Luoma SN, Stewart AR (2005) Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnol Oceanogr 50:1511–1519

    Article  CAS  Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39:754–781

    Article  CAS  Google Scholar 

  • Dumon J, Ernst W (1988) Titanium in plants. J Plant Physiol 133:203–209

    Article  CAS  Google Scholar 

  • Fritioff Å, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274

    Article  CAS  Google Scholar 

  • Gallon C, Munger C, Prémont S, Campbell PGC (2004) Hydroponic study of aluminum accumulation by aquatic plants: effects of fluoride and pH. Water Air Soil Pollut 153:135–155

    Article  CAS  Google Scholar 

  • Hamilton SJ, Buhl KJ (2004) Selenium in water, sediment, plants, invertebrates, and fish in the blackfoot river drainage. Water Air Soil Pollut 159:3–34

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Kalinowska M, Szymańska M (2012) A study on selected physiological parameters of plants grown under lithium supplementation. Biol Trace Elem Res 149:425–430

    Article  CAS  Google Scholar 

  • Hrubý M, Cígler P, Kuzel S (2002) Contribution to understanding the mechanism of titanium action in plant. J Plant Nutr 25:577–598

    Article  Google Scholar 

  • Ivanova EA, Anischenko OV, Gribovskaya IV, Zinenko GK, Nazarenko NS, Nemchinov VG, Zuev IV, Avramov AP (2012) Metal content in higher aquatic plants in a small Siberian water reservoir. Contemp Probl Ecol 5:356–364

    Article  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, New York

    Google Scholar 

  • Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642–647

    Article  CAS  Google Scholar 

  • Mazej Z, Al Sayegh-Petkovsek S, Pokorny B (2010) Heavy metal concentrations in food chain of Lake Velenjsko jezero, Slovenia: an artificial lake from mining. Arch Environ Contam Toxicol 58:998–1007

    Article  CAS  Google Scholar 

  • Mechora Š, Cuderman P, Stibilj V, Germ M (2011) Distribution of Se and its species in Myriophyllum spicatum and Ceratophyllum demersum growing in water containing Se (VI). Chemosphere 84:1636–1641

    Article  CAS  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Monferrán MV, Pignata ML, Wunderlin DA (2012) Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper. Environ Pollut 161:15–22

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  CAS  Google Scholar 

  • Rawlence DJ, Whitton JS (1977) Elements in aquatic macrophytes, water, plankton, and sediments surveyed in three North Island Lakes. N Z J Mar Freshw Res 11:73–93

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2004) Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotoxicol Environ Saf 59:64–69

    Article  CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  CAS  Google Scholar 

  • Sprenger M, McIntosh A (1989) Relationship between concentrations of aluminum, cadmium, lead, and zinc in water, sediments, and aquatic macrophytes in six acidic lakes. Arch Environ Contam Toxicol 18:225–231

    Article  CAS  Google Scholar 

  • Vardanyan LG, Ingole BS (2006) Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int 32:208–218

    Article  CAS  Google Scholar 

  • Vlasov BP, Gigevich GS (2006) Estimation of pollution of lakes of Belarus under the contents of heavy metals in water plants and bottom sediments. Limnol Rev 6:289–294

    Google Scholar 

  • Wallace A, Romney EM, Cha JW, Chaudhry FM (1977) Lithium toxicity in plants. Commun Soil Sci Plant Anal 8:773–780

    Article  CAS  Google Scholar 

  • Wang C, Lu J, Zhang S, Wang P, Hou J, Qian J (2011) Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicol Environ Saf 74:1297–1303

    Article  CAS  Google Scholar 

  • Xing W, Wu H-P, Hao B-B, Liu G-H (2013) Stoichiometric characteristics and responses of submerged macrophytes to eutrophication in lakes along the middle and lower reaches of the Yangtze River. Ecol Eng 54:16–21

    Article  Google Scholar 

  • Xue PY, Yan CZ (2011) Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere 85:1176–1181

    Article  CAS  Google Scholar 

  • Zeng H-A, Wu J-L (2009) Sedimentary records of heavy metal pollution in Fuxian Lake, Yunnan Province, China: intensity, history, and sources. Pedosphere 19:562–569

    Article  CAS  Google Scholar 

  • Zeng H, Wu J (2013) Heavy metal pollution of lakes along the mid-lower reaches of the Yangtze River in China: intensity, sources and spatial patterns. Int J Environ Res Public Health 10:793–807

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for Prof. Phil Baker and anonymous reviewers in developing and editing this paper. This study was supported by National Natural Science Foundation of China (31000163), the National S & T Major Project (2012ZX07103003) and Youth Innovation Promotion Association of CAS.

Author contributions

WX and GL designed the study and analysed the data; WX wrote the manuscript; all authors contributed substantially to revisions; WX, HW, and BH collected and determined samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Liu.

Additional information

Responsible editor: Céline Guéguen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, W., Wu, H., Hao, B. et al. Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale. Environ Sci Pollut Res 20, 6999–7008 (2013). https://doi.org/10.1007/s11356-013-1854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1854-z

Keywords

Navigation