Skip to main content
Log in

Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities

  • PCB mixtures in a complex world
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence about the widespread dispersion of OH-PCBs in various compartments of the ecosystem has accumulated, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are, today, increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for polychlorinated biphenyls (PCBs). US Department of Health and Human Services, Atlanta

    Google Scholar 

  • Anderson PN, Hites RA (1996) OH radical reactions: the major removal pathway for polychlorinated biphenyls from the atmosphere. Environ Sci Technol 30:1756–1763

    Article  CAS  Google Scholar 

  • Arulmozhiraja S, Shiraishi F, Okumura T, Iida M, Takigami H, Edmonds J, Morita M (2005) Structural requirements for the interaction of 91 hydroxylated polychlorinated biphenyls with estrogen and thyroid hormone receptors. J Toxicol Sci 84:49–62

    Article  CAS  Google Scholar 

  • Aslund MLW, Rutter A, Reimer KJ, Zeeb BA (2008) The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci Total Environ 405:14–25

    Article  Google Scholar 

  • Bedard DL, Pohl EA, Bailey JJ, Murphy A (2005) Characterization of the PCB substrate range of microbial dechlorination process LP. Environ Sci Technol 39:6831–6838

    Article  CAS  Google Scholar 

  • Bergeron JM, Crews D, McLachlan JA (1994) PCBs as environmental estrogens—turtle sex determination as a biomarker of environmental contamination. Environ Health Perspect 102:780–781

    Article  CAS  Google Scholar 

  • Bergman A, Klassonwehler E, Kuroki H (1994) Selective retention of hydroxylated PCB metabolites in blood. Environ Health Perspect 102:464–469

    Article  CAS  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Brubaker WW Jr, Hites RA (1998) Gas-phase oxidation products of biphenyl and polychlorinated biphenyls. Environ Sci Technol 32:3913–3918

    Article  CAS  Google Scholar 

  • Camara B, Herrera C, Gonzalez M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850

    Article  CAS  Google Scholar 

  • Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28:2473–2484

    Article  CAS  Google Scholar 

  • Chroma L, Moeder M, Kucerova P, Macek T, Mackova M (2003) Plant enzymes in metabolism of polychlorinated biphenyls. Fresenius Environ Bull 12:291–295

    CAS  Google Scholar 

  • Connor K, Ramamoorthy K, Moore M (1997) Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: structure–activity relationships. Toxicol Appl Pharmacol 145:111–123

    Article  CAS  Google Scholar 

  • Darling C, Alaee M, Campbell L, Pacepavicius G, Ueno D, Muir D (2004) Hydroxylated PCBs in abiotic environmental matrices: precipitation and surface waters. Organohalogen Compd 66:1470–1475

    CAS  Google Scholar 

  • Dasary SSR, Saloni J, Fletcher A, Anjaneyulu Y, Yu H (2010) Photodegradation of selected PCBs in the presence of nano-TiO2 as catalyst and H2O2 as an oxidant. Int J Environ Res Public Health 7:3987–4001

    Article  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12

    Article  CAS  Google Scholar 

  • Flanagan WP, May RJ (1993) Metabolite detection as evidence for naturally occurring aerobic PCB biodegradation in Hudson River sediments. Environ Sci Technol 27:2207–2212

    Article  CAS  Google Scholar 

  • Francova K, Mackova M, Macek T, Sylvestre M (2004) Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants. Environ Pollut 127:41–48

    Article  CAS  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105:433–449

    Article  CAS  Google Scholar 

  • Harms H, Bokern M, Kolbe M, Bock C (2003) Transformation of organic contaminants by different plant systems. In: McCutcheon S, Schnoor J (eds) Phytoremediation, transformation and control of contaminants. Wiley, Hoboken, pp 285–316

    Google Scholar 

  • Hilal SH, Carreira LA, Karickhoff SW (2004) Prediction of the solubility, activity coefficient, gas/liquid and liquid/liquid distribution coefficients of organic compounds. QSAR Comb Sci 23:709–720

    Article  CAS  Google Scholar 

  • Hornbuckle KC, Eisenreicht SJ (1996) Dynamics of gaseous semivolatile organic compounds in a terrestrial ecosystem—effects of diurnal and seasonal climate variations. Atmos Environ 30:3935–3945

    Article  CAS  Google Scholar 

  • Hu D, Martinez A, Hornbuckle KC (2009) Discovery of non-Aroclor PCB (3,3′-dichlorobiphenyl) in Chicago air. Environ Sci Technol 42:7873–7877

    Article  Google Scholar 

  • Huang Q, Hong CS (2000) TiO2 photocatalytic degradation of PCBs in soil–water systems containing fluoro surfactant. Chemosphere 41:871–879

    Article  CAS  Google Scholar 

  • Jansson B, Jensen S, Olsson M, Renberg L, Sundström G, Vaz R (1975) Identification by GC-MS of phenolic metabolites of PCB and p, p′-DDE isolated from Baltic guillemot and seal. Ambio 4:93–97

    CAS  Google Scholar 

  • Kaminski L, Kennedy MW, Adams SM, Guengerich FP (1981) Metabolism of dichlorobiphenyls by highly purified isozymes of rat liver cytochrome P-450. Biochemistry 20:7379–7384

    Article  Google Scholar 

  • Kawano M, Hasegawa J, Enomoto T, Onishi H, Nishio Y, Matsuda M, Wakimoto T (2005) Hydroxylated polychlorinated biphenyls (OH-PCBs): recent advances in wildlife contamination study. Environ Sci 12:315–324

    CAS  Google Scholar 

  • Kester MHA, Bulduk S, Tibboel D et al (2000) Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs. Endocrinology 141:1897–1900

    Article  CAS  Google Scholar 

  • Kitamura S, Jinno N, Suzuki T, Sugihara K, Ohta S, Kuroki H, Fujimoto N (2005) Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture. Toxicology 208:377–387

    Article  CAS  Google Scholar 

  • Kitamura S, Sugihara K, Sanoh S, Fujimoto N, Ohta S (2008) Metabolic activation of proestrogens in the environment by cytochrome P450 system. J Health Sci 54:343–355

    Article  CAS  Google Scholar 

  • Korach K, Sarver P, Chae K, Mclachlan J, Mckinney J (1988) Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: conformationally restricted structural probes. Mol Pharmacol 33:120–126

    CAS  Google Scholar 

  • Kuch B, Kern F, Metzger JW, Trenck KT (2010) Effect-related monitoring: estrogen-like substances in groundwater. Environ Sci Pollut Res 17:250–260

    Article  CAS  Google Scholar 

  • Lee I, Fletcher JS (1992) Involvement of mixed function oxidase systems in polychlorinated biphenyl metabolism by plant cells. Plant Cell Rep 11:97–100

    Article  CAS  Google Scholar 

  • Letcher RJ, Klasson-Wehler E, Bergman A (2000) Methyl sulfone and hydroxylated metabolites of polychlorinated biphenyls. In: Hutzinger O, Paasivirta J (eds) Earth and environmental science, vol 3, Anthropogenic Compounds. Springer, Berlin, pp 315–359

    Google Scholar 

  • Mackova M, Macek T, Kucerova P, Burkhard J, Pazlarova J, Demnerova K (1997) Degradation of polychlorinated biphenyls by hairy root culture of Solanum nigrum. Biotechnol Let 19:787–790

    Article  CAS  Google Scholar 

  • Mandalakis M, Berresheim H, Stephanou E (2003) Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere. Environ Sci Technol 37:542–547

    Article  CAS  Google Scholar 

  • Manzano MA, Perales JA, Sales D, Quiroga JM (2004) Catalyzed hydrogen peroxide treatment of polychlorinated biphenyl contaminated sandy soils. Water Air Soil Pollut 154:57–69

    Article  CAS  Google Scholar 

  • Narasimhan TR, Kim HL, Safe SH (1991) Effects of hydroxylated polychlorinated biphenyls on mouse liver mitochondrial oxidative phosphorylation. J Biochem Toxicol 3:229–236

    Article  Google Scholar 

  • Parnell JJ, Park J, Denef V, Tsoi T, Hashsham S, Quensen J, Tiedje JA (2006) Coping with polychlorinated biphenyl (PCB) toxicity: physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 72:6607–6614

    Article  CAS  Google Scholar 

  • Persoon C, Peters TM, Kumar N, Hornbuckle KC (2010) Spatial distribution of airborne polychlorinated biphenyls in Cleveland, Ohio and Chicago, Illinois. Environ Sci Technol 44:2797–2802

    Article  CAS  Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138

    Article  CAS  Google Scholar 

  • Purkey HE, Palaninathan SK, Kent KC, Smith C, Safe SH, Sacchettini JC, Kelly JW (2004) Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Chem Biol 11:1719–1728

    Article  CAS  Google Scholar 

  • Rayne S, Forest K (2010) pKa values of the monohydroxylated polychlorinated biphenyls (OH-PCBs), polybrominated biphenyls (OH-PBBs), polychlorinated diphenyl ethers (OH-PCDEs), and polybrominated diphenyl ethers (OH-PBDEs). J Environ Sci Health Part A 45:1322–1346

    Article  CAS  Google Scholar 

  • Rezek J, Macek T, Mackova M, Triska J (2007) Plant metabolites of polychlorinated biphenyls in hairy root culture of black nightshade Solanum nigrum SNC-90. Chemosphere 69:1221–1227

    Article  CAS  Google Scholar 

  • Robertson LW, Hansen LG (2001) PCBs: recent advances in environmental toxicology and health effects. Proceedings of the PCB Workshop, Lexington, Kentucky, April 9–12, 2000. University Press of Kentucky, Lexington

    Google Scholar 

  • Rodenburg LA, Du S, Fennell DE, Cavallo GJ (2010a) Evidence for widespread dechlorination of polychlorinated biphenyls in groundwater, landfills, and wastewater collection systems. Environ Sci Technol 44:7534–7540

    Article  CAS  Google Scholar 

  • Rodenburg LA, Jia G, Du S, Cavallo GJ (2010b) Evidence for unique and ubiquitous environmental sources of 3,3′-dichlorobiphenyl (PCB 11). Environ Sci Technol 44:2816–2821

    Article  CAS  Google Scholar 

  • Rodenburg LA, Du S, Lui H, Guo J, Oseagulu N, Fennell DE (2012) Evidence for dechlorination of polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins and -furans in wastewater collection systems in the New York metropolitan area. Environ Sci Technol 46:6612–6620

    Article  CAS  Google Scholar 

  • Safe S, Hutzinger O, Jones D (1975) Mechanism of chlorobiphenyl metabolism. J Agric Food Chem 23:851–853

    Article  CAS  Google Scholar 

  • Sakiyama T, Yamamoto A, Kakutani N, Fukuyama J, Okumura T (2007) Hydroxylated polychlorinated biphenyls (OH-PCBs) in the aquatic environment: levels and congener profiles in sediments from Osaka, Japan. Organohalogen Comp 69:1380–1383

    Google Scholar 

  • Samuel SR, Dasary SRS, Saloni J, Fletcher A, Anjaneyulu Y, Yu H (2012) Photodegradation of selected PCBs in the presence of nano-TiO2 as catalyst and H2O2 as an oxidant. Int J Environ Res Public Health 7:3987–4001

    Google Scholar 

  • Sanderman H Jr (1994) Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics 4:225–241

    Article  Google Scholar 

  • Schultz TW, Kraut DH, Sayler GS, Layton AC (1998) Estrogenicity of selected biphenyls evaluated using a recombinant yeast assay. Environ Toxicol Chem 17:1727–1729

    Article  CAS  Google Scholar 

  • Schuur AG, Brouwer A, Bergman A, Coughtriec MWH, Visserd TJ (1998) Inhibition of thyroid hormone sulfation by hydroxylated metabolites of polychlorinated biphenyls. Chem Biol Interact 109:293–297

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry. Wiley, New York

    Google Scholar 

  • Shiraishi F, Okumura T, Nomachi M, Serizawa S, Nishikawa J, Edmonds JS, Shiraishi H, Morita M (2003) Estrogenic and thyroid hormone activity of a series of hydroxy-polychlorinated biphenyls. Chemosphere 52:33–42

    Article  CAS  Google Scholar 

  • Sietmann R, Gesell M, Hammer E, Schauer F (2006) Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere 64:672–685

    Article  CAS  Google Scholar 

  • Sinjari T, Darnerud PO (1998) Hydroxylated polychlorinated biphenyls: placental transfer and effects on thyroxine in the foetal mouse. Xenobiotica 28(1):21–30

    Article  CAS  Google Scholar 

  • Sinkkonen S, Paasivirta J (2000) Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere 40:943–949

    Article  CAS  Google Scholar 

  • Sondossi M, Barriault D, Sylvestre M (2004) Metabolism of 2,2′- and 3,3′-dihydroxybiphenyl by the diphenyl catabolic pathway of Comamonas testosteroni B-356. Appl Environ Microbiol 70:174–181

    Article  CAS  Google Scholar 

  • Srinivasan A, Lehmler HJ, Robertson LW, Ludewig G (2001) Production of DNA strand breaks in vitro and reactive oxygen species in vitro and in HL-60 cells by PCB metabolites. Toxicol Sci 60(1):92–102

    Article  CAS  Google Scholar 

  • Takeuchi S, Shiraishi F, Kitamura S, Kuroki H, Jin K, Kojima H (2011) Characterization of steroid hormone receptor activities in 100 hydroxylated polychlorinated biphenyls, including congeners identified in humans. Toxicology 289:112–121

    Article  CAS  Google Scholar 

  • Tampal N, Lehmler HJ, Espandiari P, Malmberg T, Robertson LW (2002) Glucuronidation of hydroxylated polychlorinated biphenyls (PCBs). Chem Res Toxicol 15:1259–1266

    Article  CAS  Google Scholar 

  • Tehrani R, Lyv MM, Kaveh R, Schnoor JL, Van Aken B (2012) Biodegradation of mono-hydroxylated PCBs by Burkholderia xenovorans. Biotechnol Lett 34:2247–2252

    Article  CAS  Google Scholar 

  • Totten LA, Eisenreich SJ, Brunciak PA (2002) Evidence for destruction of PCBs by the OH radical in urban atmospheres. Chemosphere 47:735–746

    Article  CAS  Google Scholar 

  • Ueno D, Darling C, Alaee M, Campbell L, Pacepavicius G, Teixeira C, Muir D (2007) Detection of hydroxylated polychlorinated biphenyls (OH-PCBs) in the abiotic environment: Surface water and precipitation from Ontario. Canada Environ Sci Technol 41:1841–1848

    Article  CAS  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  Google Scholar 

  • Van den Hurk P, Kubiczak GA, Lehmler HJ, James MO (2002) Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxy-benzo[a]pyrene. Environ Health Perspect 110:343–348

    Article  Google Scholar 

  • Wiegel J, Zhang X, Wu Q (1999) Anaerobic dehalogenation of hydroxylated polychlorinated biphenyls by Desulfitobacterium dehalogenans. Appl Environ Microbiol 65:2217–2221

    CAS  Google Scholar 

  • Wilken A, Bock C, Bokern M, Harms H (1995) Metabolism of different PCB congeners in plant-cell cultures. Environ Toxicol Chem 14:2017–2022

    Article  CAS  Google Scholar 

  • Zeeb BA, Amphlett JS, Rutter A, Reimer KJ (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. Int J Phytoremediat 8:199–221

    Article  CAS  Google Scholar 

  • Zhai G, Lehmler H, Schnoor JL (2010) Hydroxylated metabolites of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants. Environ Sci Technol 44:3901–3907

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health (NIH), Award Number 2P42 ES013661-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Van Aken.

Additional information

Responsible editor: Hongwen Sun

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tehrani, R., Van Aken, B. Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities. Environ Sci Pollut Res 21, 6334–6345 (2014). https://doi.org/10.1007/s11356-013-1742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1742-6

Keywords

Navigation