Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 9, pp 6392–6405 | Cite as

Metal extractability patterns to evaluate (potentially) mobile fractions in periurban calcareous agricultural soils in the Mediterranean area—analytical and mineralogical approaches

  • Ana de Santiago-Martín
  • Inmaculada Valverde-Asenjo
  • Jose R. Quintana
  • Antonio Vázquez
  • Antonio L. Lafuente
  • Concepción González-Huecas
Research Article

Abstract

A set of periurban calcareous agricultural Mediterranean soils was spiked with a mixture of Cd, Cu, Pb and Zn at two levels within the limit values proposed by current European legislation, incubated for up to 12 months, and subjected to various one-step extraction procedures to estimate mobile (neutral salts) and potentially mobile metal fractions (complexing and acidic extraction methods). The results obtained were used to study metal extractability patterns according to the soil characteristics. The analytical data were coupled with mineralogical investigations and speciation modelling using the Visual Minteq model. The formation of soluble metal-complexes in the complexing extracts (predicted by the Visual Minteq calculations) led to the highest extraction efficiency with complexing extractants. Metal extractability patterns were related to both content and composition of carbonate, organic matter, Fe oxide and clay fractions. Potentially mobile metal fractions were mainly affected by the finest soil fractions (recalcitrant organic matter, active lime and clay minerals). In the case of Pb, scarce correlations between extractable Pb and soil constituents were obtained which was attributed to high Pb retention due to the formation of 4PbCO3·3PbO (corroborated by X-ray diffraction). In summary, the high metal proportion extracted with complexing agents highlighted the high but finite capacity to store potentially mobilizable metals and the possible vulnerability of these soils against environmental impact from metal accumulation.

Keywords

Calcareous soil One-step extractions Speciation modelling Mineralogical composition Soil pollution 

Notes

Acknowledgments

This work was supported by the Universidad Complutense de Madrid and the Madrid Autonomous Region through Grant GR58/08, Research Team 950605 and Network CARESOIL, Ref. P2009/AMB-1648. We especially wish to thank Miguel Juanco Ortenbach (Centro Superior de Investigaciones Científicas, CSIC) and Julián Velázquez Cano (Universidad Complutense de Madrid, UCM) for their helpful advice on mineralogical analysis, Ms Pru Brooke-Turner for the revision of the English version of the manuscript and the comments and suggestions of the editor and the anonymous referees.

Supplementary material

11356_2013_1684_MOESM1_ESM.doc (416 kb)
ESM 1 (DOC 415 kb)
11356_2013_1684_MOESM2_ESM.doc (137 kb)
ESM 2 (DOC 137 kb)
11356_2013_1684_MOESM3_ESM.doc (266 kb)
ESM 3 (DOC 266 kb)

References

  1. Barton L, Abadía J (2006) Iron nutrition in plants and rhizospheric microorganisms. Springer, DordrechtCrossRefGoogle Scholar
  2. Batjes NH (2000) Soil vulnerability to diffuse pollution in Central and Eastern Europe SOVEUR Project (Version 1.0). FAO and ISRICGoogle Scholar
  3. Besnard E, Chenu C, Robert M (2001) Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils. Environ Pollut 112:329–337CrossRefGoogle Scholar
  4. Bish DL (1994) Quantitative x-ray diffraction analysis of soils. In: Amonette JE, Zelazny LW (eds) Quantitative methods in soil mineralogy. SSSA, Madison, pp 267–295Google Scholar
  5. Bolan NS, Adriano DC, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron 78:215–278CrossRefGoogle Scholar
  6. Bradl HB (2004) Adsorption of heavy metal ions of soils and soils constituents. J Colloid Interf Sci 277:1–18CrossRefGoogle Scholar
  7. Buekers J, Van Laer L, Amery F, Van Buggenhout S, Maes A, Smolders E (2007) Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils. Eur J Soil Sci 58:1514–1524CrossRefGoogle Scholar
  8. de Miguel E, Llamas JF, Chacon E, Berg T, Larssen S, Røyset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31(17):2733–2740CrossRefGoogle Scholar
  9. de Santiago-Martín A, Valverde-Asenjo I, Quintana JR, González-Huecas C, Lafuente AL (2013) Soil properties affecting metal extractability patterns in periurban calcareous agricultural soils in the Mediterranean area. Int J Environ Res, in pressGoogle Scholar
  10. DIN (Deutsches Institut für Normung, Bodenbeschaffenheit) (1995) Extraktion von Spurenelemente mit Ammonium-nitratlösung, Vornorm DINV 19730. DIN Boden-Chemische Bodenuntersuchungs-verfahren, BerlinGoogle Scholar
  11. Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agricultureGoogle Scholar
  12. Douglas LA (1985) Criteria for vermiculitic and chloritic family classes in soil taxonomy. In: Kittrick JA (ed) Mineral classification of soils, vol 16. Soil Science Society of America, MadisonGoogle Scholar
  13. Drouineau G (1942) Dosage rapide du calcaire actif de sols. Ann Agron 12:441–450Google Scholar
  14. Ettler V, Mihaljevič M, Šebek O, Grygar T (2007) Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments—analytical and thermodynamic approaches. Anal Chim Acta 602(1):131–140CrossRefGoogle Scholar
  15. European Commission (2006) Thematic strategy for soil protection. COM (2006) 231, Brussels, BelgiumGoogle Scholar
  16. FAO (2006) World reference base for soil resources. A framework for international classification, correlation and communication. FAO, RomaGoogle Scholar
  17. Feng M, Shan X, Zhang S, Wen B (2005) A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137:231–240CrossRefGoogle Scholar
  18. Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal Chem 21(6+7):451–467CrossRefGoogle Scholar
  19. Gupta SK, Aten C (1993) Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Int J Environ Anal Chem 51:25–46CrossRefGoogle Scholar
  20. Gupta SK, Vollmer MK, Krebs R (1996) The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Sci Total Environ 178:11–20CrossRefGoogle Scholar
  21. Gustafsson JP (2011) Visual MINTEQ, v.3.0. Department of Land and Water Resources Engineering , Royal Institute of Technology, Stockholm http://www2.lwr.kth.se/English/OurSoftware/Vminteq/index.htm
  22. IGME (Instituto Geológico y Minero de España) (1990) Mapa geológico de España nº 535, vol 1. Escala, Madrid, p 50.000, Algete)Google Scholar
  23. Iram S, Ahmad I, Akhtar S (2012) Distribution of heavy metals in peri-urban agricultural areas soils. J Chem Soc Pak 34(4):861–869Google Scholar
  24. ISRIC (2002) Procedures for soil analysis, 3rd edn. International Soil Reference and Information Center, WageningenGoogle Scholar
  25. Jalali M, Khanlari ZV (2008) Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma 143:26–40CrossRefGoogle Scholar
  26. Jiménez Ballesta R, Conde Bueno P, Martín Rubí JA, García Giménez R (2010) Pedo-geochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla La Mancha, Spain). Eur J Geosci 2(4):441–454CrossRefGoogle Scholar
  27. Lafuente AL, González C, Quintana JR, Vázquez A, Romero A (2008) Mobility of heavy metals in poorly developed carbonate soils in the Mediterranean region. Geoderma 145:238–244CrossRefGoogle Scholar
  28. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  29. McLaughlin MJ (2001) Aging of metals in soils changes bioavailability. Fact Sheet Environ Risk Assess 4:1–6Google Scholar
  30. Meers E, Du Laing G, Unamuno V, Ruttens A, Vangronsveld J, Tack FMG, Verloo MG (2007) Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma 141:247–259CrossRefGoogle Scholar
  31. Micó C, Recatalá L, Peris M, Sánchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872CrossRefGoogle Scholar
  32. Moreno Merino L (1998) Estudio de la influencia del suelo sobre la composición de las aguas subterráneas a través de la solución del suelo. Modelo en Fluvisoles calcáricos. Dissertation, Universidad Complutense de MadridGoogle Scholar
  33. Pérez-Esteban J, Escolástico C, Moliner A, Masaguer A (2013) Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 90:276–283CrossRefGoogle Scholar
  34. Peris M, Micó C, Recatalá L, Sánchez R, Sánchez J (2007) Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci Total Environ 378:42–48CrossRefGoogle Scholar
  35. Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210CrossRefGoogle Scholar
  36. Prokop Z, Cupr P, Zlevorova-Zlamalikova V, Komarek J, Dusek L, Holoubek I (2003) Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environ Res 91:119–126CrossRefGoogle Scholar
  37. Qin F, Shan XQ, Wei B (2004) Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57:253–263CrossRefGoogle Scholar
  38. Quevauviller P, Lachica M, Barahona E, Rauret G, Ure A, Gómez A, Muntau H (1996) Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Sci Total Environ 178:127–132CrossRefGoogle Scholar
  39. Rangel-Porras G, García-Magno JB, González-Muñoz MP (2010) Lead and cadmium immobilization on calcitic limestone materials. Desalination 262:1–10CrossRefGoogle Scholar
  40. Rauret G, Lopez-Sanchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Queqauviller P (1999) Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61CrossRefGoogle Scholar
  41. Rivas-Martínez S, Rivas-Saenz S (2009) Worldwide bioclimatic classification system. Centro de Investigaciones Fitosociológicas, España. http//:www.ucm.es/info/cif
  42. Rovira P, Vallejo VR (2000) Evaluating thermal and acid hydrolysis methods as indicators of soil organic matter quality. Commun Soil Sci Plant Anal 31:81–100CrossRefGoogle Scholar
  43. Sayen S, Guillon E (2009) Aging effect on the copper sorption on a vineyard soil: Column studies and SEM–EDS analysis. J Colloid Interface Sci 331:47–54CrossRefGoogle Scholar
  44. Sayyad G, Afyuni M, Mousavi SF, Abbaspour KC, Richards BK, Schulin R (2010) Transport of Cd, Cu, Pb and Zn in a calcareous soil under wheat and safflower cultivation - A column study. Geoderma 154:311–320CrossRefGoogle Scholar
  45. Shirvani M, Shariatmadari H, Kalbasi M (2007) Kinetics of cadmium desorption from fibrous silicate clay minerals: influence of organic ligands and aging. Appl Clay Sci 37:175–184CrossRefGoogle Scholar
  46. Sipos P, Németh T, Kovács Kis V, Mohai I (2008) Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73:461–469CrossRefGoogle Scholar
  47. SISS (1985) Metodi Normalizzati di Analisi del Suolo. Edagricole, BolognaGoogle Scholar
  48. Strawn D, Sparks DL (2000) Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil. Soil Sci Soc Am J 64:144–156CrossRefGoogle Scholar
  49. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  50. Van Ranst E, Verloo M, Demeyer A, Pauwels JM (1999) Manual for the soil chemistry and fertility laboratory. Faculty Agricultural and Applied Biological Sciences, Ghent University, pp 243Google Scholar
  51. Vidal J, Pérez-Sirvent C, Martínez-Sánchez MJ, Navarro MC (2004) Origin and behaviour of heavy metals in agricultural Calcaric Fluvisols in semiarid conditions. Geoderma 121:257–270CrossRefGoogle Scholar
  52. Zaman MI, Mustafa S, Khan S, Xing B (2009) Heavy metal desorption kinetic as affected by of anions complexation onto manganese dioxide surfaces. Chemosphere 77:747–755CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana de Santiago-Martín
    • 1
  • Inmaculada Valverde-Asenjo
    • 1
  • Jose R. Quintana
    • 1
  • Antonio Vázquez
    • 2
  • Antonio L. Lafuente
    • 1
  • Concepción González-Huecas
    • 1
  1. 1.Departamento de Edafología, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  2. 2.Centro de Investigación Forestal-INIAMadridSpain

Personalised recommendations