Skip to main content

Molecular properties affecting the adsorption coefficient of phenylurea herbicides

Abstract

The adsorption of 12 pesticides of the phenylurea family was studied by batch experiments in order to determine the adsorption coefficient, K d. The study was conducted in two soils chosen for their differences in organic matter and calcite contents. K d pesticide adsorption coefficients were higher for soil S1 than for soil S2 due to the presence of a higher organic matter content and a lower calcite content in soil S1. To identify pesticide properties governing retention, 18 molecular descriptors were considered. Class-specific quantitative structure–property relationship (QSPR) soil sorption models using one, two, and three descriptors were developed from our experimental data using linear regressions. One of the aims of this work was to check whether QSPR models that did not include literature values of K ow were able to predict K d coefficients in satisfactory agreement with our experimental data. The influence of the level of theory in determining K ow and polarisability predictors on the predictive performance of the model was also examined by comparing quantum chemistry and empirical (QikProp) approaches. The one-descriptor model using “quantum” polarisability α was found to perform almost as well as or better than the other models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. AFNOR (2003) Qualité du sol—Détermination de la distribution granulométrique des particules du sol—Méthode à la pipette. NF X31-107

  2. AFNOR (1999) Qualité du sol—Méthodes chimiques—Détermination de la capacité d'échange cationique (CEC) et des cations extractibles. NF X31-130

  3. Arrhenius A, Grönvall F, Scholze M, Backhaus T, Blanck H (2004) Predictability of the mixture toxicity of 12 similarly acting congeneric inhibitors of photosystem II in marine periphyton and epipsammon communities. Aquat Toxicol 68:351–367

    Article  CAS  Google Scholar 

  4. Baker JR, Mihelcic JR, Sabljic A (2001) Reliable QSAR for estimating K oc for persistent organic pollutants: correlation with molecular connectivity indices. Chemosphere 45:213–221

    Article  CAS  Google Scholar 

  5. Blanchoud H, Moreau-Guigon E, Farrugia F, Chevreuil M, Mouchel JM (2007) Contribution by urban and agricultural pesticide uses to water contamination at the scale of the Marne watershed. Sci Total Environ 375:168–179

    Article  CAS  Google Scholar 

  6. Calvet R (1989) Adsorption of organic chemicals in soils. Environ Health Perspect 83:145–177

    Article  CAS  Google Scholar 

  7. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  8. Damasio J, Navarro-Ortega A, Tauler R, Lacorte S, Barcelo D, Soares A, Lopez MA, Riva MC, Barata C (2010) Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicology 19:1084–1094

    Article  CAS  Google Scholar 

  9. El Arfaoui A, Sayen S, Marceau E, Stievano L, Guillon E, Couderchet M (2009) Relationship between soil composition and retention capacity of terbumeton onto chalky soils. Environ Chem 6:245–252

    Article  Google Scholar 

  10. El Arfaoui A, Sayen S, Paris M, Keziou A, Couderchet M, Guillon E (2012) Is organic matter alone sufficient to predict isoproturon sorption in calcareous soils? Sci Total Environ 432:251–256

    Article  CAS  Google Scholar 

  11. Fava L, Orru MA, Businelli D, Scardala S, Funari E (2006) Leaching potential of some phenylureas and their main metabolites through laboratory studies. Environ Sci Pollut Res 13:386–391

    Article  CAS  Google Scholar 

  12. Federico C, Motta S, Palmieri C, Pappalardo M, Librando V, Saccone S (2011) Phenylurea herbicides induce cytogenetic effects in Chinese hamster cell lines. Mutat Res 721:89–94

    Article  CAS  Google Scholar 

  13. Fouqué-Brouard CM, Fournier JM (1996) Adsorption–desorption and leaching of phenylurea herbicides on soils. Talanta 43:1793–1802

    Article  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJA (2009) 02 ed. Gaussian, Inc., Wallingford, CT

  15. Gatignol C, Etienne JC (2010) Rapport sur pesticides et santé. Office parlementaire d'évaluation des choix scientifiques et technologiques, 29 avril

  16. Gaultier J, Farenhorst A, Crow G (2006) Spatial variability of soil properties and 2,4-D sorption in a hummocky field as affected by landscape position and soil depth. Can J Soil Sci 86:89–85

    Article  CAS  Google Scholar 

  17. Gawlik BM, Sotiriou N, Feicht EA, Schulte-Hostede S, Kettrup A (1997) Alternative for the determination of the soil adsorption coefficient, K oc, of non-ionic organic compounds—a review. Chemosphere 34:2525–2551

    Article  CAS  Google Scholar 

  18. Gramatica P, Corradi M, Consonni V (2000) Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 41:763–777

    Article  CAS  Google Scholar 

  19. Grover R (1975) Adsorption and desorption of urea herbicides on soils. Can J Soil Sci 55:127–135

    Article  CAS  Google Scholar 

  20. Guzzella L, Capri E, Di Corcia A, Barra Caracciolo A, Giuliano G (2006) Fate of diuron and linuron in a field lysimeter experiment. J Environ Qual 35:312–323

    Article  CAS  Google Scholar 

  21. Huber A, Bac M, Frede HG (2000) Pollution of surface waters with pesticides in Germany: modeling non-point source inputs. Agric Ecosyst Environ 80:191–204

    Article  CAS  Google Scholar 

  22. ISO (International Organization for Standardization) (2005) Soil quality—determination of pH. ISO 10390

  23. ISO (International Organization for Standardization) (1998) Soil quality—determination of organic carbon by sulfochromic oxidation. ISO 14235

  24. ISO (International Organization for Standardization) (1995) Soil quality—determination of carbonate content—volumetric method. ISO 10693

  25. Irace-Guigand S, Aaron JJ (2003) The role of organic colloids in herbicide transfer to rivers: a quantitative study of triazine and phenylurea interactions with colloids. Anal Bioanal Chem 376:431–435

    Article  CAS  Google Scholar 

  26. Hussein S, Devers-Lamrani M, El Azhari N, Martin-Laurent F (2011) Isolation and characterisation of isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation 22:637–650

    Article  Google Scholar 

  27. Huuskonen J (2003) Prediction of soil sorption coefficient of a diverse set of organic chemicals from molecular structure. J Chem Inf Comput Sci 43:1457–1462

    Article  CAS  Google Scholar 

  28. Liu Z, He Y, Huang P, Jilani G (2008) The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils. Environ Pollut 152:163–171

    Article  CAS  Google Scholar 

  29. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvatation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–3696

    Article  CAS  Google Scholar 

  30. Messing PG, Farenhorst A, Waite DT, McQueen DAR, Sproull JF, Humphries DA, Thompson LL (2011) Predicting wetland contamination from atmospheric deposition measurements of pesticides in the Canadian Prairie Pothole region. Atmos Environ 45:7227–7234

    Article  CAS  Google Scholar 

  31. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  32. Morvan X, Mouvet C, Baran N, Gutierrez A (2006) Pesticides in the groundwater of a spring draining a sandy aquifer: temporal variability of concentrations and fluxes. J Contam Hydrol 87:176–190

    Article  CAS  Google Scholar 

  33. Orton F, Lutz I, Kloas W, Routledge EJ (2009) Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence. Environ Sci Technol 43:2144–2150

    Article  CAS  Google Scholar 

  34. Palma G, Sanchez A, Olave Y, Encina F, Palma R, Barra R (2004) Pesticide levels in surface waters in an agricultural–forestry basin in Southern Chile. Chemosphere 57:763–770

    Article  CAS  Google Scholar 

  35. PPDB (2009) The Pesticide Properties Database (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire. Funded by UK national sources and the EU-funded FOOTPRINT project (FP6-SSP-022704)

  36. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 3-900051-07-0

  37. Salvestrini S, Capasso S, Iovino P (2008) Catalytic effect of dissolved humic acids on the chemical degradation of phenylurea herbicides. Pest Manag Sci 64:768–774

    Article  CAS  Google Scholar 

  38. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structure. J Comput Aided Mol Des 14:123–134

    Article  CAS  Google Scholar 

  39. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110/1–114110/15

    Google Scholar 

  40. Tierney KB, Williams JL, Gledhill M, Sekela MA, Kennedy CJ (2011) Environmental concentrations of agricultural use of pesticide mixtures evoke primary and secondary stress responses in rainbow trout. Environ Toxicol Chem 30:2602–2607

    Article  CAS  Google Scholar 

  41. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  42. Turgut C, Atatanir LT, Cutright J (2010) Evaluation of pesticide contamination in Dilek National Park, Turkey. Environ Monit Assess 170:671–679

    Article  CAS  Google Scholar 

  43. US EPA (1996) Screening guidance: technical background, N°EP A/540/R95/128. http://nepis.epa.gov/

  44. Weber JB, Wilkerson GG, Reinhardt CF (2004) Calculating pesticide sorption coefficients (K d) using selected soil properties. Chemosphere 55:157–166

    Article  CAS  Google Scholar 

  45. Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is part of the AQUAL CPER Program financed by the “Conseil Général de la Marne”, the Champagne-Ardenne Region, the French Ministry for Research and the European Fund for Regional Development (FEDER). We are grateful to the “Conseil Général de la Marne” for a grant to J.L. and the Champagne-Ardenne Region for a grant to A.B. This work was supported by both the Computational Centre and the Molecular Modelling Platform of the University of Reims Champagne-Ardenne (URCA). The C.R.I.H.A.N Computing Centre is acknowledged for CPU time donated.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Stéphanie Sayen or Eric Hénon.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blondel, A., Langeron, J., Sayen, S. et al. Molecular properties affecting the adsorption coefficient of phenylurea herbicides. Environ Sci Pollut Res 20, 6266–6281 (2013). https://doi.org/10.1007/s11356-013-1654-5

Download citation

Keywords

  • Soil
  • Adsorption
  • Hydrophobicity
  • K ow
  • Polarisability
  • Molecular descriptors
  • DFT
  • K d