Skip to main content
Log in

Olive tree, Olea europaea L., leaves as a bioindicator of atmospheric PCB contamination

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Olive tree leaf samples were collected to investigate their possible use for biomonitoring of lipophilic toxic substances. The samples were analyzed for 28 polychlorinated biphenyls (PCB) congeners. Twelve congeners were detected in the samples. PCB-60, 77, 81, 89, 105, 114, and 153 were the most frequently detected congeners ranging from 32 % for PCB-52 to 97 % for PCB-81. Σ12PCBs concentration varied from below detection limit to 248 ng/g wet weight in the sampling area, while the mean congener concentrations ranged from 0.06 ng/g (PCB-128 + 167) to 64.2 ng/g wet weight (PCB-60). Constructed concentration maps showed that olive tree leaves can be employed for the estimation of spatial distrubution of these congeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ATSDR (2000) Toxicological profile for polychlorinated biphenyls (PCBs), US Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Blais JM, Froese KL, Kimpe LE, Muir DCG, Backus S, Comba M, Schindler DW (2003) Assessment and characterization of polychlorinated biphenyls near a hazardous waste incinerator: analysis of vegetation, snow, and sediments. Environ Toxicol Chem 22:126–133

    Article  CAS  Google Scholar 

  • Chen J, Zhao H, Gao L, Henkelmann B, Schramm KW (2006) Atmospheric PCDD/F and PCB levels implicated by pine (Cedrus deodara) needles at Dalian, China. Environ Pollut 144:510–515

    Article  CAS  Google Scholar 

  • Elik A, Akçay M, Sökmen M (2000) Ultrasonic leaching of bio-collectors for heavy metal analysis. Int J Environ Anal Chem 77:133–145

    Article  CAS  Google Scholar 

  • Eriksson G, Jensen S, Kylin H, Strachan W (1989) The pine needle as a monitor of atmospheric pollution. Nature 341:42–44

    Article  CAS  Google Scholar 

  • Falandysz J, Orlikowska A, Jarzyńska G, Bochentin I, Wyrzykowska B, Drewnowska M, Hanari N, Horii Y, Yamashita N (2012) Levels and sources of planar and non-planar PCBs in pine needles across Poland. J Environ Sci Health A 47:688–703

    Article  CAS  Google Scholar 

  • Fernández JE, Moreno F (1999) Water use by the olive tree. J Crop Prod 2:101–162

    Article  Google Scholar 

  • Holoubek I, Kořínek P, Šeda Z, Schneiderová E, Holoubková I, Pacl A, Tříska J, Cudlín P, Čáslavský J (2000) The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Pollut 109:283–292

    Article  CAS  Google Scholar 

  • Klánová J, Čupr P, Baráková D, Šeda Z, Anděl P, Holoubek I (2009) Can pine needles indicate trends in the air pollution levels at remote sites? Environ Pollut 157:3248–3254

    Article  Google Scholar 

  • Kodavanti PRS, Kannan N, Yamashita N, Derr-Yellin EC, Ward TR, Burgin DE, Tilson HA, Birnbaum LS (2001) Differential effects of two lots of Aroclor 1254: congener-specific analysis and neurochemical end points. Environ Health Perspect 109:1153–1161

    Article  CAS  Google Scholar 

  • Kožul D, Romanić S (2008) Distribution of organochlorine compounds in pine needles collected in Zagreb. Bull Environ Contam Toxicol 81:339–342

    Article  Google Scholar 

  • Leon JM, Bukovac MJ (1978) Cuticle development and surface morphology of olive leaves with reference to penetration of foliar-applied chemicals. J Am Soc Hortic Sci 103:465–472

    CAS  Google Scholar 

  • Mast MA, Alvarez DA, Zaugg SD (2012) Deposition and accumulation of airborne organic contaminants in Yosemite National Park, California. Environ Toxicol Chem 31:524–533

    Article  CAS  Google Scholar 

  • Müller JF, Hawker DW, McLachlan MS, Connell DW (2001) PAHs, PCDD/Fs, PCBs and HCB in leaves from Brisbane, Australia. Chemosphere 43:507–515

    Article  Google Scholar 

  • Romanić SH, Klinčić D (2012) Organochlorine compounds in pine needles from Croatia. Bull Environ Contam Toxicol 88:838–841

    Article  Google Scholar 

  • Sabljic A, Guesten H, Schoenherr J, Riederer M (1990) Modeling plant uptake of airborne organic chemicals. 1. Plant cuticle/water partitioning and molecular connectivity. Environ Sci Technol 24:1321–1326

    Article  CAS  Google Scholar 

  • Schulz H, Popp P, Huhn G, Stärk HJ, Schüürmann G (1999) Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Sci Total Environ 232:49–58

    Article  CAS  Google Scholar 

  • Schuster JK, Gioia R, Sweetman AJ, Jones KC (2010) Temporal trends and controlling factors for polychlorinated biphenyls in the UK atmosphere (1991–2008). Environ Sci Technol 44:8068–8074

    Article  CAS  Google Scholar 

  • Tasdemir Y, Odabasi M, Vardar N, Sofuoglu A, Murphy TJ, Holsen TM (2004) Dry deposition fluxes and velocities of polychlorinated biphenyls (PCBs) associated with particles. Atmos Environ 38:2447–2456

    Article  CAS  Google Scholar 

  • Tato L, Tremolada P, Ballabio C, Guazzoni N, Parolini M, Caccianiga M, Binelli A (2011) Seasonal and spatial variability of polychlorinated biphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps. Environ Pollut 159:2656–2664

    Article  CAS  Google Scholar 

  • Turan D, Kocahakimoglu C, Kavcar P, Gaygisiz H, Atatanir L, Turgut C, Sofuoglu SC (2011) The use of olive tree (Olea europaea L.) leaves as a bioindicator for environmental pollution in the Province of Aydın, Turkey. Environ Sci Pollut Res 18:355–364

    Article  CAS  Google Scholar 

  • Wyrzykowska B, Bochentin I, Hanari N, Orlikowska A, Falandysz J, Yuichi H, Yamashita N (2006) Source determination of highly chlorinated biphenyl isomers in pine needles – comparison to several PCB preparations. Environ Pollut 143:46–59

    Google Scholar 

  • Wyrzykowska B, Hanari N, Orlikowska A, Bochentin I, Rostkowski P, Falandysz J, Taniyasu S, Horii Y, Jiang Q, Yamashita N (2007) Polychlorinated biphenyls and -naphthalenes in pine needles and soil from Poland—concentrations and patterns in view of long-term environmental monitoring. Chemosphere 67:1877–1886

    Article  CAS  Google Scholar 

  • Xu D, Deng L, Chai Z, Mao X (2004) Organohalogenated compounds in pine needles from Beijing City, China. Chemosphere 57:1343–1353

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Olive leaves were collected in a research project supported by the Scientific and Technical Research Council of Turkey (grant no. 107O170).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysun Sofuoglu.

Additional information

Responsible editor: Leif Kronberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofuoglu, S.C., Yayla, B., Kavcar, P. et al. Olive tree, Olea europaea L., leaves as a bioindicator of atmospheric PCB contamination. Environ Sci Pollut Res 20, 6178–6183 (2013). https://doi.org/10.1007/s11356-013-1640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1640-y

Keywords

Navigation