Skip to main content
Log in

Influence of exogenous urea on photosynthetic pigments, 14CO2 uptake, and urease activity in Elodea densa—environmental implications

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L−1) on photosynthetic pigments (measured spectrophotometrically), uptake of 14CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler’s reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L−1) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L−1) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L−1, respectively. However, exogenous urea in high concentration (1,000 mg L−1) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azizullah A, Nasir A, Richter P, Lebert M, Häder DP (2011) Evaluation of the adverse effects of two commonly used fertilizers, DAP and urea, on motility and orientation of the green flagellate Euglena gracilis. Environ Exp Bot 74:140–150

    Article  CAS  Google Scholar 

  • Baker JE, Thompson JF (1962) Metabolism of urea and ornithine cycle intermediates by nitrogen-starved cells of Chlorella vulgaris. Plant Physiol 37:618–624

    Article  CAS  Google Scholar 

  • Bespamyatnov GP, Krotov YA (1985) PDK khimicheskikh veshchestv v okruzhayushchei srede: spravochnik (Maximum allowable concentrations of chemical substances in the environment: reference book). Khimiya, Leningrad, 585 p

    Google Scholar 

  • Borisova GG, Feudorova YV (1999) The impact of diffuse run-off from agricultural catchment areas on surface water quality and their management. In: Palmaiova E (ed) International conference on EU water management framework directive and Danubian countries. Stimul, Bratislava, pp 176–181

    Google Scholar 

  • Borisova GG, Konistyapina OU (2002) Environmental management of diffuse runoff caused by agricultural activities. In: Proceedings of the 6th International conference of diffuse pollution. IWA/NWA, Amsterdam, pp 498–502

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bremner JM, Krogmeier MJ (1988) Elimination of the adverse effects of urea fertilizer on seed germination, seedling growth, and early plant growth in soil. Proc Natl Acad Sci 85:4601–4604

    Article  CAS  Google Scholar 

  • Chaudhry Q, Schroder P, Werck-Reichhart D, Grajek W, Marecik R (2002) Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ Sci Pollut Res 9(1):4–17

    Article  CAS  Google Scholar 

  • Chirkova TV (1997) Cell. Membranes and plant resistance to stresses (in Russian). Soros Obr Zh 9:12–17

    Google Scholar 

  • Coleman JOD, Frova C, Schroder P, Tissut M (2002) Exploiting plant metabolism for the phytoremediation of persistent herbicides. Environ Sci Pollut Res 9:18–28

    Article  CAS  Google Scholar 

  • D’Apolito M, Du X, Zong H, Catucci A et al (2010) Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J Clin Invest 120:203–213

    Article  Google Scholar 

  • Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158:1980–1983

    Article  CAS  Google Scholar 

  • Dosnon-Olette R, Schröder P, Bartha B, Aziz A, Couderchet M, Eullaffroy P (2011) Enzymatic basis for fungicide removal by Elodea canadensis. Environ Sci Pollut Res 18:1015–1021

    Article  CAS  Google Scholar 

  • Gatidou G, Iatrou E (2011) Investigation of photodegradation and hydrolysis of selected substituted urea and organophosphate pesticides in water. Environ Sci Pollut Res 18:949–957

    Article  CAS  Google Scholar 

  • Gonzalez A, Plamondon AP (1976–1977). Urea fertilization of natural forest: Effects on water quality. Forest Ecol Management 1:213–221

    Google Scholar 

  • Herbeck LS, Unger D, Wu Y, Jennerjahn TC (2012) Effluent, nutrient and organic matter export from shrimp and fishponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China. Cont Shelf Res. doi:10.1016/j.csr.2012.05.006

    Google Scholar 

  • Houlès V, Guérif M, Mary B (2007) Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. Eur J Agron 27:1–11

    Article  Google Scholar 

  • Jayaraman J (1981) Laboratory manual in Biochemistry. Wiley, New Delhi, 64 p

    Google Scholar 

  • Krogmeier MJ, McCarty W, Bremner JM (1989) Phytotoxicity of foliar-applied urea. Proc Natl Acad Sci USA 86:8189–8191

    Article  CAS  Google Scholar 

  • Lichtenthaler H (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lima WK, Rosgen J, Englander SW (2009) Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group. Proc Natl Acad Sci 106:2595–2600

    Article  Google Scholar 

  • Malec P, Maleva MG, Prasad MNV, Strzałka K (2010) Responses of Lemna trisulca L. (Duckweed) exposed to low doses of cadmium: thiols, metal binding complexes and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma 240:69–74

    Article  CAS  Google Scholar 

  • Maleva MG, Nekrasova GF, Borisova GG, Chukina NV, Ushakova OS (2012) Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. Rus J Plant Physiol 59:190–197

    Article  CAS  Google Scholar 

  • Mokronosov AT, Dobrov AV (1973) Chamber for studying photosynthetic metabolism and for determination of potential metabolism in isolated leaves. In: Mokronosov AT (ed) Voprosy regulyatsii fotosinteza (Problems of photosynthesis regulation). Ural. Gos. Univ, Sverdlovsk, pp 149–152

    Google Scholar 

  • Mokronosov AT, Ilinych ZG, Shukolyukova NI (1966) Assimilation of urea by potato plants. Fiziologiya Rasteniy (Sov Plant Physiol) 13:798–806

    CAS  Google Scholar 

  • Mony C, Koschnick TJ, Haller WT, Muller S (2007) Competition between two invasive Hydrocharitaceae (Hydrilla verticillata (L.f.) (Royle) and Egeria densa (Planch)) as influenced by sediment fertility and season. Aquat Bot 86:236–242

    Article  Google Scholar 

  • Ng WJ, Sim TS, Ong SL, Kho K, Ho LM, Tay SH, Goh CC (1990) The effect of Elodea densa on aquaculture water quality. Aquaculture 84:267–276

    Article  CAS  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natl Sci Acad 70(1):71–98

    CAS  Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  CAS  Google Scholar 

  • Rossky PJ (2008) Protein denaturation by urea: slash and bond. Proc Natl Acad Sci 105:16825–16826

    Article  CAS  Google Scholar 

  • Saygideger SD, Dogan M, Gultekin ZG (2009) Effects of copper on amounts of photosynthetic pigments, nitrogen and free proline in the aquatic macrophyte Typha latifolia L. Fresenius Environ Bull 5:543–548

    Google Scholar 

  • Shaahan MM, El-Sayed AA, Abou El-Nour EAA (1999) Predicting nitrogen, magnesium and iron nutritional status in some perennial crops using a portable chlorophyll meter. Sci Hortic 82:339–348

    Article  CAS  Google Scholar 

  • Sirko A, Brodzik R (2000) Plant ureases: roles and regulation. Acta Biochim Pol 47:1189–1195

    CAS  Google Scholar 

  • Strock JS (2008) Ammonification. Encyclopedia of Ecology, pp 162–165. doi:10.1016/B978-008045405-4.00256-1

  • Usenko OM, Sakevich AE, Klochenko PD (2000) The participations of photosynthetic hydrobionts in urea degradation. Uk Hidrobiol J 36:20–29

    Google Scholar 

  • van den Berg AK, Perkins TD (2004) Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. For Ecol Manag 200:113–117

    Article  Google Scholar 

  • Witte CP (2011) Urea metabolism in plants. Plant Sci 180:431–438

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Program “Scientific and Scientific-Pedagogical Personnel of the Innovative Russia” (state contracts P1301 and 14.А18.21.0203). MNVP is thankful to the Ural Federal University named after the first President of Russia B.N. Yeltsin Ekaterinburg, Russia, for the invitation as “visiting professor” to participate in the on-going research activities. The authors thank Mr. J. Koelmel, Fulbright Nehru Scholar from USA for verifying the English language of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. V. Prasad.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maleva, M., Borisova, G., Chukina, N. et al. Influence of exogenous urea on photosynthetic pigments, 14CO2 uptake, and urease activity in Elodea densa—environmental implications. Environ Sci Pollut Res 20, 6172–6177 (2013). https://doi.org/10.1007/s11356-013-1639-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1639-4

Keywords

Navigation