Skip to main content
Log in

Immobilized Fe (III)-doped titanium dioxide for photodegradation of dissolved organic compounds in water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of dissolved organic carbon (DOC) by utilizing Fe(III)-doped TiO2 at the visible radiation range is hereby reported. The photocatalyst was immobilized on sintered glass frits with the coating done by wet method, calcinated at 500 °C and then applied in a photodegradation reactor. The addition of a transition metal dopant, Fe(III), initiated the red shift which was confirmed by UV–Vis spectroscopy, and the photocatalyst was activated by visible radiation. X-ray diffraction patterns showed that Fe(III) doping had an effect on the crystallinity of the photocatalysts. Mixtures of DOC and associated coloured solutions were degraded in first-order kinetics, showing that the degradation process was not dependent on intermediates or other species in solution. A reactor with a catalyst coating area of 12.57 cm2 was able to degrade 0.623 mg of the dissolved material per minute. Exposure of the reactor to hostile acidic conditions and repeated use did not compromise its efficiency. It was observed that the reactor regenerates itself in the presence of visible light, and therefore, it can be re-used for more than 100 runs before the performance dropped to <95 %. The results obtained indicate that the photocatalyst reactor has a great potential of application for use in tandem with biosorbent cartridges to complement water purification methods for domestic consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  • Agrawal A, Sahu KK (2006) Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J Hazard Mater B 137:915–924

    Article  CAS  Google Scholar 

  • Balasubramanian G, Dionysiou DD, Suidan MT, Subramanian V, Baudin I, Laine JM (2003) Titania powder modified sol–gel process for photocatalytic applications. J Mater Sci 38:823–831

    Article  CAS  Google Scholar 

  • Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77(1):102–116. doi:10.1002/jctb.532

    Article  CAS  Google Scholar 

  • Chance RJ, Shaw M, Telgmann L, Baxter M, Carpenter LJ (2010) A comparison of spectrophotometric and denuder based approaches for the determination of gaseous molecular iodine. Atmos Meas Tech 3:177–185

    Article  CAS  Google Scholar 

  • Chen L, Wang H, Zeng Q, Xu Y, Sun L, Xu H, Ding L (2009) On-line coupling of solid-phase extraction to liquid chromatography. J Chromatogr Sci 47(8):614–623

    Article  CAS  Google Scholar 

  • Dykaar BB, Kitanidis PK (1996) Macrotransport of a biologically reacting solute through porous media. Water Resour 32:307–320

    Article  CAS  Google Scholar 

  • Ekpete OA, Horsfall M (2011) Kinetic sorption study of phenol onto activated carbon derived from fluted pumpkin stem waste. ARPN J Eng Appl Sci 6(6):43–50

    Google Scholar 

  • Fretwell R, Douglas P (2001) An active, robust and transparent nanocrystalline anatase TiO2 thin film — preparation, characterisation and the kinetics of photodegradation of model pollutants. J Photochem Photobiol 143:229–241

    Google Scholar 

  • Grzechulska-Damszel J (2009) Removal of Organic impurities from water using a reactor with photoactive refill, research article. Int J Photoenergy 12:1–6

    Article  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci 304(1):52–57

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007a) Defluoridation of wastewaters using waste carbon slurry. Water Res 41(15):3307–3316

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007b) Removal of reactofix golden yellow 3 RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142:443–448

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007c) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309(2):464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342(2):533–539

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15(6):238–243

    Article  Google Scholar 

  • Hidalgo MC, Sakthivel S, Bahnemann D (2004) Highly photoactive and stable TiO2 coatings on sintered glass. Appl Catal Gen 277:183–189

    Article  CAS  Google Scholar 

  • Hilgendorff M, Sundstro V (1998) Dynamics of electron injection and recombination of dye-sensitized TiO2 particles. J Phys Chem B 102:10505–10514

    Article  CAS  Google Scholar 

  • Ho YS, McKay G, Wase DJ, Foster CF (2000) Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 18:639–650

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  • Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A 130(2–3):163–170

    Article  CAS  Google Scholar 

  • Kim DJ, Hahn SH, Oh SH, Kim EJ (2002) Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating. Mater Lett 57:355–360

    Article  Google Scholar 

  • Kochanyt J, Bolton JR (1992) Mechanism of photodegradation of aqueous organic pollutants. 2 Measurement of the primary rate constants for reaction of 'OH radicals with benzene and some halobenzenes using an EPR Spin-Trapping method following the photolysis of H202. Environ Sci Technol 26:262–265

    Article  Google Scholar 

  • Kosobuchi P, Buszewki B (2011) Carbon changes in environment, from total organic carbon to soil organic matter. Pol J Environ Stud 20(1):9–14

    Google Scholar 

  • Lagergreg S (1898) The theory of so-called adsorption of soluble substances. Handlingar 24(4):1–39

    Google Scholar 

  • Laokiat L, Khemthong P, Grisdanurak N, Sreearunothai P, Pattanasiriwisawa W, Klysubun W (2012) Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth. Korean J Chem Eng 29(3):377–383

    Article  CAS  Google Scholar 

  • Li Ying L, Hon LS, White T, Withers R, Hai LB (2003) Controlled nanophase development in photocatalytic titania. Mater Trans 44(7):1328–1332, 2003

    Article  Google Scholar 

  • Liu H, Imanishi A, Nakato Y (2007) Mechanisms for photooxidation reactions of water and organic compounds on carbon-doped titanium dioxide, as studied by photocurrent measurements. J Phys Chem C 111:8603–8610

    Article  CAS  Google Scholar 

  • Maldonado MI, Passarinho PC, Oller I (2007) Photocatalytic degradation of EU priority substances: a comparison between TiO2 and fenton plus photo-fenton in a solar pilot plant. J Photochem Photobiol A 185(2-3):354–363. doi:10.1016/j.jphotochem.2006.06.036

    Article  CAS  Google Scholar 

  • Mwangi IW, Ngila JC, Okonkwo JO (2012) A comparative study of modified and unmodified maize tassels for removal of selected trace metals in contaminated water. Toxicol Environ Chem 94(1):20–39

    Article  CAS  Google Scholar 

  • Paz Y, Heller A (1997) Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: the deleterious effect of sodium contamination and its prevention. J Mater Res 12:2759–2766

    Article  CAS  Google Scholar 

  • Rocha F, Walker A (1995) Simulation of the persistence of atrazine in soil at different sites in Portugal. Weed Res 35:179–186

    Article  CAS  Google Scholar 

  • Shi L, Li W, Wang F (2009) Experimental study of a closed system in the chlorine dioxide-iodine-malonic acid-sulfuric acid oscillation reaction by UV–vis spectrophotometric method. J Solut Chem 38:571–588

    Article  CAS  Google Scholar 

  • Sonawane RS, Kale BB, Dongare MK (2004) Preparation and photo-catalytic activity of Fe–TiO2 thin films prepared by sol–gel dip coating. Mater Chem Phys 85:52–57

    Article  CAS  Google Scholar 

  • Stamatovska VD, Dimova V, Colanceska-Ragenovik K (2006) Solvent effect on electronic absorption spectra of some n-aryl substituted dodekanamides. Bull Chem Technol Macedonia 25(1):9–16

    Google Scholar 

  • Steiner SA, Baumann TF, Kong J, Satcher JH, Dresselhaus MS (2007) Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir 23(9):5161–5166

    Article  CAS  Google Scholar 

  • Thompson TL, Yates JT Jr (2005) TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top Catal 35(3–4):197–211

    Article  CAS  Google Scholar 

  • Valente JS, Padilha MP, Florentino AO (2006) Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2. Chemosphere 64(7):1128–1133

    Article  CAS  Google Scholar 

  • Wang L, Zhang C, Wu F, Deng N (2007) Photodegradation of aniline in aqueous suspensions of microalgae. J Photochem Photobiol B Biol 87:49–57

    Article  CAS  Google Scholar 

  • Wu J, Nofziger DL (1999) Incorporating temperature effects on pesticide degradation into a management model. J Environ Qual 28:92–100

    Article  CAS  Google Scholar 

  • Yıldız O, Citak D, Tuzen M, Soylak M (2011) Determination of copper, lead and iron in water and food samples after column solid phase extraction using 1-phenylthiosemicarbazide on Dowex Optipore L-493 resin. Food Chem Toxicol 49:458–463

    Article  Google Scholar 

  • Zhoua Z, Qianb S, Yaob S, Zhanga Z (2002) Electron transfer in colloidal TiO2 semiconductors sensitized by hypocrellin A. Radiat Phys Chem 65:241–248

    Article  Google Scholar 

  • Zimmerman HE, Grunewald GL (1966) The chemistry of barrelene. III. A unique photoisomerization to semibullvalene. J Am Chem Soc 88(1):183–184

    Article  CAS  Google Scholar 

Download references

Acknowledgments

IW Mwangi is grateful to OPCW (Organisation for Protection of Chemical Weapons) for running cost of this project and the University of Johannesburg (UJ) for registration and bursary, the Analytical/Environmental research group for helpful discussion and Kenyatta University for granting study leave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Catherine Ngila.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mwangi, I.W., Ngila, J.C., Ndungu, P. et al. Immobilized Fe (III)-doped titanium dioxide for photodegradation of dissolved organic compounds in water. Environ Sci Pollut Res 20, 6028–6038 (2013). https://doi.org/10.1007/s11356-013-1600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1600-6

Keywords

Navigation