Environmental Science and Pollution Research

, Volume 20, Issue 11, pp 7680–7685 | Cite as

Spontaneous vegetation succession at different central European mining sites: a comparison across seres

  • Karel Prach
  • Kamila Lencová
  • Klára Řehounková
  • Helena Dvořáková
  • Alena Jírová
  • Petra Konvalinková
  • Ondřej Mudrák
  • Jan Novák
  • Romana Trnková
Mining and the Environment - Understanding Processes, Assessing Impacts and Developing Remediation

Abstract

We performed detrended correspondence analysis (DCA) ordination to compare seven successional seres running in stone quarries, coal mining spoil heaps, sand and gravel pits, and extracted peatlands in the Czech Republic in central Europe. In total, we obtained 1,187 vegetation samples containing 705 species. These represent various successional stages aged from 1 to 100 years. The successional seres studied were more similar in their species composition in the initial stages, in which synathropic species prevailed, than in later successional stages. This vegetation differentiation was determined especially by local moisture conditions. In most cases, succession led to a woodland, which usually established after approximately 20 years. In very dry or wet places, by contrast, where woody species were limited, often highly valuable, open vegetation developed. Except in the peatlands, the total number of species and the number of target species increased during succession. Participation of invasive aliens was mostly unimportant. Spontaneous vegetation succession generally appears to be an ecologically suitable and cheap way of ecosystem restoration of heavily disturbed sites. It should, therefore, be preferred over technical reclamation.

Keywords

Ecological succession Mining Ordination Restoration Target species Vegetation 

References

  1. Anderson KJ (2007) Temporal patterns in rates of community change during succession. Am Nat 169:780–793CrossRefGoogle Scholar
  2. Beneš J, Kepka P, Konvička M (2003) Limestone quarries as refuges for European xerophilous butterflies. Conserv Biol 17:1058–1069CrossRefGoogle Scholar
  3. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248Google Scholar
  4. Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balík V, Kalčík J, Řehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–122CrossRefGoogle Scholar
  5. Glenn-Lewin DC, Peet RK, Veblen TT (1992) Plant succession. Theory and prediction. Chapman and Hall, LondonGoogle Scholar
  6. Hodačová D, Prach K (2003) Spoil heaps from brown coal mining: technical reclamation vs. spontaneous re-vegetation. Restor Ecol 11:385–391CrossRefGoogle Scholar
  7. Kent M, Coker P (1992) Vegetation description and analysis. Belhaven Press, LondonGoogle Scholar
  8. Konvalinková P, Prach K (2010) Spontaneous succession of vegetation in mined peatlands: a multi-site study. Preslia 82:423–435Google Scholar
  9. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  10. Luken JO (1990) Directing ecological succession. Chapman and Hall, LondonGoogle Scholar
  11. Mudrák O, Frouz J, Velichová V (2010) Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol Eng 36:783–790CrossRefGoogle Scholar
  12. Neuhäuslová Z (2001) Map of potential natural vegetation of the Czech Republic. Academia, PrahaGoogle Scholar
  13. Novák J, Prach K (2003) Vegetation succession in basalt quarries: pattern over a landscape scale. Appl Veg Sci 6:111–116Google Scholar
  14. Novák J, Konvička M (2006) Proximity of valuable habitats affects succession patterns in abandoned quarries. Ecol Eng 26:113–122CrossRefGoogle Scholar
  15. Peet RK (1978) Forest vegetation of the Colorado Front Range: patterns of species diversity. Vegetatio 37:65–78CrossRefGoogle Scholar
  16. Perrow MR, Davy AJ (eds) (2002) Handbook of ecological restoration. Cambridge University Press, CambridgeGoogle Scholar
  17. Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens G E (ed), Long-term studies in ecology: approaches and alternatives. p. 110–135, SpringerGoogle Scholar
  18. Prach K (1987) Succession of vegetation on dumps from strip coal mining, N. W. Bohemia, Czechoslovakia. Folia Geobot Phytotax 22:339–354Google Scholar
  19. Prach K (1988) Life-cycles of plants in relation to temporal variation of populations and communities. Preslia 60:23–40Google Scholar
  20. Prach K (2003) Spontaneous vegetation succession in central European man-made habitats: what information can be used in restoration practice? Appl Veg Sci 6:125–129Google Scholar
  21. Prach K, Hobbs RJ (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor Ecol 16:363–366CrossRefGoogle Scholar
  22. Prach K, Řehounková K (2006) Vegetation succession over broad geographical scales: which factors determine the patterns? Preslia 78:469–480Google Scholar
  23. Prach K, Pyšek P, Šmilauer P (1999) Prediction of vegetation succession in human-disturbed habitats using an expert system. Restor Ecol 7:15–23CrossRefGoogle Scholar
  24. Prach K, Pyšek P, Bastl M (2001) Spontaneous vegetation succession in human-disturbed habitats: a pattern across seres. Appl Veg Sci 4:83–88CrossRefGoogle Scholar
  25. Prach K, Pyšek P, Jarošík V (2007) Climate and pH as a determinants of vegetation succession in central European man-made habitats. J Veg Sci 18:701–710CrossRefGoogle Scholar
  26. Prach K, Řehounková K, Řehounek J, Konvalinková P (2011) Ecological restoration of central European mining sites: a summary of a multi-site analysis. Landsc Res 36:263–268CrossRefGoogle Scholar
  27. Prévosto B, Kuiters L, Bernhardt-Römerman M, Dölle M, Schmidt W, Hoffman M, Van Uytvanck J, Bohner A, Kreiner D, Stadler J, Klotz S, Brandl R (2011) Impacts of land abandonment on vegetation: successional pathways in European habitats. Folia Geobot 46:303–325CrossRefGoogle Scholar
  28. Procházka F (ed) (2001) Black and red lists of vascular plants in the Czech Republic. Příroda (18):1–166Google Scholar
  29. Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasionpatterns. Preslia 84:155–256Google Scholar
  30. Řehounková K, Prach K (2006) Spontaneous vegetation succession in disused gravel-sand pits: role of local site and landscape factors. J Veg Sci 17:583–590CrossRefGoogle Scholar
  31. Řehounková K, Prach K (2008) Spontaneous vegetation succession in gravel-sand pits: a potential for restoration. Restor Ecol 16:305–312CrossRefGoogle Scholar
  32. Řehounková K, Prach K (2010) Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel-sand pits. Basic Appl Ecol 11:45–53CrossRefGoogle Scholar
  33. Řehounková K, Řehounek J, Prach K (eds) (2011) Near-natural restoration vs. technical reclamation of mining sites in the Czech Republic. Faculty of Science USB, České Budějovice. 211 pGoogle Scholar
  34. Sádlo J, Chytrý M, Pyšek P (2007) Regional species pools of vascular plants in habitats of the Czech Republic. Preslia 79:303–322Google Scholar
  35. Stewart GB, Cox ES, LeDuc MG, Pakerman RJ, Pullin AS, Marrs RH (2008) Control of Pteridium aquilinum: meta-analysis of a multi-site study in the UK. Ann Bot 101:957–970CrossRefGoogle Scholar
  36. Štýs S, Braniš M (1999) Czech school of land reclamation. Acta Univ Carol Environ 13:99–109Google Scholar
  37. ter Braak CJ, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user´s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power. Ithaca, USAGoogle Scholar
  38. Tischew S, Kirmer A (2007) Implementation of basic studies in the ecological restoration of surface-mined land. Restor Ecol 15:321–325CrossRefGoogle Scholar
  39. Trnková R, Řehounková K, Prach K (2010) Spontaneous succession of vegetation on acidic bedrock in quarries in the Czech Republic. Preslia 82:333–343Google Scholar
  40. Tropek R, Kadlec T, Karešová P, Spitzer L, Kočárek P, Malenovský I, Baňař P, Tuf IH, Hejda M, Konvička M (2010) Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J Appl Ecol 47:139–147CrossRefGoogle Scholar
  41. van Andel J, Aronson J (eds) (2012) Restoration ecology. The new frontier, 2nd Ed. Wiley-Blackwell, OxfordGoogle Scholar
  42. Vojar J (2006) Colonization of post-mining landscapes by amphibians: a review. Sci Agric Bohem 37:35–40Google Scholar
  43. Walker LR (1999) Ecosystems of disturbed land. Elsevier, New YorkGoogle Scholar
  44. Walker LR, del Moral R (eds) (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeGoogle Scholar
  45. Walker LR, Walker J, Hobbs RJ (eds) (2007) Linking restoration and ecological succession. Springer, New YorkGoogle Scholar
  46. Zobel M, van der Maarel E, Dupré C (1998) Species pool: the concept, its determination and significance for community restoration. Appl Veg Sci 1:55–66CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karel Prach
    • 1
    • 2
  • Kamila Lencová
    • 1
  • Klára Řehounková
    • 1
    • 2
  • Helena Dvořáková
    • 1
  • Alena Jírová
    • 1
    • 2
  • Petra Konvalinková
    • 1
  • Ondřej Mudrák
    • 2
  • Jan Novák
    • 1
  • Romana Trnková
    • 1
  1. 1.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic

Personalised recommendations