Skip to main content

Advertisement

Log in

Use of EO-1 Advanced Land Imager (ALI) multispectral image data and real-time field sampling for water quality mapping in the Hirfanlı Dam Lake, Turkey

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper focuses on the evaluation of water quality variations in Hirfanlı Water Reservoir, which is one of the most important water resources in Turkey, through EO-1 (Earth Observing-1) Advanced Land Imager (ALI) multispectral data and real-time field sampling. The study was materialized in 20 different sampling points during the overpass of the EO-1 ALI sensor over the study area. A multi-linear regression technique was used to explore the relationships between radiometrically corrected EO-1 ALI image data and water quality parameters: chlorophyll a, turbidity, and suspended solids. The retrieved and verified results show that the measured and estimated values of water quality parameters are in good agreement (R 2 > 0.93). The resulting thematic maps derived from EO-1 multispectral data for chlorophyll a, turbidity, and suspended solids show the spatial distribution of the water quality parameters. The results indicate that the reservoir has average nutrient values. Furthermore, chlorophyll a, turbidity, and suspended solids values increased at the upstream reservoir and shallow coast of the Hirfanlı Water Reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akins ER, Wang Y, Zhou Y (2010) In: Wang Y (ed) Remote sensing of coastal environments. CRC, New York, pp 297–312

    Google Scholar 

  • APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC, pp 7–15

    Google Scholar 

  • Benzer SŞ, Gül A, Yılmaz M (2007) The feeding biology of Tinca tinca L., 1758 living in Hirfanlı Dam Lake. Fen Bilimleri Dergisi (Journal of Sciences), Cumhuriyet University 28(1):40–50

    Google Scholar 

  • Brivio PA, Giardino C, Zilioli E (2001) Validation of satellite data for quality assurance in lake monitoring applications. Sci Total Environ 268:3–18

    Article  CAS  Google Scholar 

  • Carlson RE, Simpson J (1996) A coordinator's guide to volunteer lake monitoring methods. North American Lake Management Society, p 96

  • Chebud Y, Ghinwa MN, Rivero RG, Melesse AM (2012) Water quality monitoring using remote sensing and an artificial neural network. Water Air Soil Pollut 223:4875–4887

    Article  CAS  Google Scholar 

  • Coskun HG, Tanik A, Alganci U, Cigizoglu HK (2008) Determination of environmental quality of a drinking water reservoir by remote sensing, GIS and regression analysis. Water Air Soil Pollut 194:275–285

    Article  CAS  Google Scholar 

  • Dekker AG, Vos RJ, Peters SWM (2001) Comparison of remote sensing data, model results and in situ data for total suspended matter TSM in the southern Frisian lakes. Sci Total Environ 268:197–214

    Article  CAS  Google Scholar 

  • Duan H, Zhang Y, Zhang B, Song K, Wang Z (2007) Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environ Monit Assess 129:295–308

    Article  CAS  Google Scholar 

  • Goltermann HL, De Oude NT (1991) Eutrophication of lakes, rivers and costal seas. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 5. Part A. Water pollution. Springer, Berlin, pp 79–124

    Google Scholar 

  • Harrington JA, Schiebe FR (1992) Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and secchi depth with Landsat MSS data. Remote Sens Environ 39:15–27

    Article  Google Scholar 

  • Hedger RD, Atkinson PM, Malthus TJ (2001) Optimizing sampling strategies for estimating mean water quality in lakes using geostatistical techniques with remote sensing. Lakes Reserv Res Manag 6:279–288

    Article  Google Scholar 

  • Hu CM, Chen ZQ, Clayton TD, Swarzenski P, Brock JC, Muller-Karger FE (2004) Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL. Remote Sens Environ 93:423–441

    Article  Google Scholar 

  • Kloiber SM, Brezonik PL, Bauer ME (2002) Application of Landsat imagery to regional-scale assessments of lake clarity. Water Res 36:4330–4340

    Article  CAS  Google Scholar 

  • Kondratyev KY, Filatov NN, Johannessen OM, Melentyev VV, Pozdnyakov DV, Ryanzhin SV, Shalina EV, Tikhomirov AI (1999) Limnology and remote sensing: a contemporary approach. Springer, Berlin, 406 pp (A textbook on contemporary approaches on remote sensing of surface waters)

  • Koponen S, Pulliainen J, Kallio K, Hallikainen M (2002) Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens Environ 79:51–59

    Article  Google Scholar 

  • Lavery P, Pattiaratchi C, Wyllie A, Hick P (1993) Water quality monitoring in estuarine waters using the Landsat Thematic Mapper. Remote Sens Environ 3:268–280

    Article  Google Scholar 

  • Nas B, Karabork H, Ekercin S, Berktay A (2009) Mapping chlorophyll-a through in-situ measurements and Terra ASTER satellite data. Environ Monit Assess 157:375–382

    Article  CAS  Google Scholar 

  • Nas B, Ekercin S, Karabork H, Berktay A, Mulla D (2010) An application of Landsat-5 TM image data for water quality mapping in Lake Beysehir, Turkey. Water Air Soil Pollut 212(1–4):183–197

    Article  CAS  Google Scholar 

  • Nyenje PM, Foppen JW, Uhlenbrook S, Kulabako R, Muwanga A (2010) Eutrophication and nutrient release in urban areas of sub-Saharan Africa—a review. Sci Total Environ 408(3):447–455

    Article  CAS  Google Scholar 

  • Oron G, Gitelson A (1996) Real-time quality monitoring by remote sensing of contaminated water-bodies: waste stabilization pond effluent. Water Res 30(12):3106–3114

    Article  CAS  Google Scholar 

  • Ostlund C, Flink P, Strombeck N, Pierson D, Lindell T (2001) Mapping of the water quality of Lake Erken, Sweden, from imaging spectrometry and Landsat Thematic Mapper. Sci Total Environ 268:139–154

    Article  CAS  Google Scholar 

  • Pattiaratchi C, Lavery P, Wyllie A, Hick P (1994) Estimates of water quality in coastal waters using multi-date Landsat Thematic Mapper data. Int J Remote Sens 15:1571–1584

    Article  Google Scholar 

  • Pepper IL, Gerba CP, Brusseau ML (2006) Environmental and pollution science, Chapter 3, section 3.8 (p 35–36) Lakes and Reservoirs, 2nd Edition, Elsevier, USA, p 532

    Google Scholar 

  • Pfafflin JR, Ziegler EN (2006) Encyclopedia of environmental science and engineering, Volume 1 (A-L) and 2 (M-Z), Section Eutrophication (p 389–401), Fifth Edition, Taylor & Francis Group, p 1383

  • Smith VH (2003) Eutrophication of freshwater and marine ecosystems: a global problem. Environ Sci Pollut Res Int 10:126–139

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  Google Scholar 

  • Thiemann S, Kaufmann H (2000) Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake District, Germany. Remote Sens Environ 73:227–235

    Article  Google Scholar 

  • Vowles PD, Connell DW (1980) Experiments in environmental chemistry - A Laboratory Manuel, Section 1.2 Eutrophication (p 14–21), Pergamon Series in Environmental Science, Volume 4, Pergamon Press, GB, p 102.

    Google Scholar 

  • Wang XJ, Ma T (2001) Application of remote sensing techniques in monitoring and assessing the water quality of Taihu Lake. Bull Environ Contam Toxicol 67:863–870

    Article  CAS  Google Scholar 

  • Wang YP, Xia H, Fu JM, Sheng GY (2004) Water quality change in reservoirs of Shenzhen, China: detection using Landsat TM data. Sci Total Environ 328:195–206

    Article  CAS  Google Scholar 

  • Xu H, Vavilin D, Vermaas W (2001) Chlorophyll can serve as the major pigment in functional Photosystem II complexes of cyanobacteria. Proc Natl Acad Sci U S A 98:14168–14173

    Article  CAS  Google Scholar 

  • Yıldız O (2009) Assessing temporal and spatial characteristics of droughts in the Hirfanli Dam Basin, Turkey. Sci Res Essays 4(4):249–255

    Google Scholar 

  • Zhang Y, Pulliainen JT, Koponen SS, Hallikainen MT (2003) Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Trans Geosci Remote Sens 41:622–629

    Article  Google Scholar 

  • Zhou W, Wang S, Zhou Y, Troy A (2006) Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data. Int J Remote Sens 27(6):1177–1191

    Article  Google Scholar 

  • USGS (2013) http://eo1.usgs.gov/faq/question?id=21. Accessed 13 Feb 2013

Download references

Acknowledgment

The authors appreciate the generous support provided by the local Authority of Sarıyahşi County (Ankara, Turkey) during the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kavurmacı.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavurmacı, M., Ekercin, S., Altaş, L. et al. Use of EO-1 Advanced Land Imager (ALI) multispectral image data and real-time field sampling for water quality mapping in the Hirfanlı Dam Lake, Turkey. Environ Sci Pollut Res 20, 5416–5424 (2013). https://doi.org/10.1007/s11356-013-1553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1553-9

Keywords

Navigation