Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview

Abstract

The quality of water is continuously deteriorating due to its increasing toxic threat to humans and the environment. It is imperative to perform treatment of wastewater in order to remove pollutants and to get good quality water. Carbon materials like porous carbon, carbon nanotubes and fullerene have been extensively used for advanced treatment of wastewaters. In recent years, carbon nanomaterials have become promising adsorbents for water treatment. This review attempts to compile relevant knowledge about the adsorption activities of porous carbon, carbon nanotubes and fullerene related to various organic and inorganic pollutants from aqueous solutions. A detailed description of the preparation and treatment methods of porous carbon, carbon nanotubes and fullerene along with relevant applications and regeneration is also included.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abram FSH, Sims IR (1982) The toxicity of aniline to rainbow trout. Water Res 16:1309–1312

    CAS  Article  Google Scholar 

  2. Ademiluyi FT, Amadi SA, Amakama NJ (2009) Adsorption and treatment of organic contaminants using activated carbon from waste Nigerian bamboo. J Appl Sci Environ Manag 13:39–47

    Google Scholar 

  3. Afkhami A, Madrakian T, Amini A, Karimi Z (2008) Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions. J Hazard Mater 150:408–412

    CAS  Article  Google Scholar 

  4. Agnihotri S, Rood MJ, Rostam-Abadi M (2005) Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 43:2379–2388

    CAS  Article  Google Scholar 

  5. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 30:282–290

    Article  CAS  Google Scholar 

  6. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77:16–23

    CAS  Article  Google Scholar 

  7. Altenor S, Carene B, Emmanuel E, Lambert J, Ehrhardt J-J, Gaspard S (2009) Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J Hazard Mater 165:1029–1039

    CAS  Article  Google Scholar 

  8. Álvarez PM, Beltrán FJ, Gómez-Serrano V, Jaramillo J, Rodríguez EM (2004) Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Res 38:2155–2165

    Article  CAS  Google Scholar 

  9. Amais RS, Ribeiro JS, Segatelli MG, Yoshida IVP, Luccas PO, Tarley CRT (2007) Assessment of nanocomposite alumina supported on multi-wall carbon nanotubes as sorbent for on-line nickel preconcentration in water samples. Sep Purif Technol 58:122–128

    CAS  Article  Google Scholar 

  10. Amao Y, Asai K, Okura I (2000) A novel optical oxygen sensing system based on triplet–triplet reflectance of fullerene C60-polystyrene film by time-resolved spectroscopy using diffuse reflectance laser flash photolysis. Analyst 125:523–526

    CAS  Article  Google Scholar 

  11. Ania CO, Parra JB, Menéndez JA, Pis JJ (2005) Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous Mesoporous Mater 85:7–15

    CAS  Article  Google Scholar 

  12. Arulkumar M, Sathishkumar P, Palvannan T (2011) Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. J Hazard Mater 186:827–834

    CAS  Article  Google Scholar 

  13. Aviles F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47:2970–2975

    CAS  Article  Google Scholar 

  14. Ayranci E, Duman O (2006) Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. J Hazard Mater B 136:542–552

    CAS  Article  Google Scholar 

  15. Ballesteros E, Gallego M, Valcarcel M (2000) Analytical potential of fullerene as adsorbent for organic and organometallic compounds from aqueous solutions. J Chromatogr 869:101–110

    CAS  Article  Google Scholar 

  16. Bansal RC, Goyal M, Bansal RC, Goyal M (eds) (2005) Adsorption in activated carbon adsorption. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  17. Baquero MC, Giraldo L, Moreno JC, Suárez-García F, Martínez-Alonso A, Tascón JMD (2003) Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid. J Anal Appl Pyrolysis 70:779–784

    CAS  Article  Google Scholar 

  18. Berezkin VI, Viktorovski LV, Vul AY (2002) A comparative study of the sorption capacity ofactivated charcoal, soot, and fullerenes for organochlorine compounds. Tech Phys Lett 28:885–888

    CAS  Article  Google Scholar 

  19. Berezkin VI, Viktorovski LV, Vul AY (2003) Fullerene single crystals as adsorbents of organic compounds. Semiconductors 37:775–783

    CAS  Article  Google Scholar 

  20. Bianco A, Gasparrini F, Maggini M (1997) Molecular recognition by a silica-bound fullerene derivative. Am Chem Soc 119:7550–7554

    CAS  Article  Google Scholar 

  21. Bina B, Pourzamani H, Rashidi A, Amin MM (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Public Health 2012:817187

    Google Scholar 

  22. Blanco-Martnez DA, Giraldo L, Moreno-Pirajan JC (2009) Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons. J Hazard Mater 169:291–296

    Article  CAS  Google Scholar 

  23. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769

    CAS  Article  Google Scholar 

  24. Bradder P, Ling S, Wang S, Liu S (2011) Dye adsorption on layered graphite oxide. J Chem Eng Data 56:138–141

    CAS  Article  Google Scholar 

  25. Chakrapani N, Zhang YM, Nayak SK, Moore JA, Carroll DL, Choi YY, Ajayan PM (2003) Chemisorption of acetone on carbon nanotubes. J Phys Chem B 107:9308–9311

    CAS  Article  Google Scholar 

  26. Chan BM, Cha SI, Kim KT, Lee KH, Hong SH (2005) Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process. Mater Sci Eng, A 395:124–128

    Article  CAS  Google Scholar 

  27. Chang PH, Jean JS, Jiang WT, Li ZH (2009) Mechanism of tetracycline sorption on rectorite. Colloids Surf A 339:94–99

    CAS  Article  Google Scholar 

  28. Chen YY, Fang PF, Zeng ZR, Fan JH (1999) Synthesis of linear fullerene-containing polysiloxanes and their application to capillary gas chromatography. Chem Lett 28:499–500

    Google Scholar 

  29. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    CAS  Article  Google Scholar 

  30. Chen C, Hu J, Shao D, Li J, Wang X (2009) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J Hazard Mater 164:923–928

    CAS  Article  Google Scholar 

  31. Cheng X, Kan AT, Tomson MB (2004) Naphthalene adsorption and desorption from aqueous C60 fullerene. J Chem Eng Data 49:675–683

    CAS  Article  Google Scholar 

  32. Cheng X, Kan AT, Tomson MB (2005) Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60. J Nanoparticle Res 7:555–567

    CAS  Article  Google Scholar 

  33. Chiang Y, Lin WH, Chang YC (2011) The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl Surf Sci 257:2401–2410

    CAS  Article  Google Scholar 

  34. Cho HH, Wepasnick K, Smith BA, Bangash FK, Fairbrother DH, Ball WP (2010) Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26:967–981

    CAS  Article  Google Scholar 

  35. Choy KKH, Porter JF, McKay G (2004) Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon. Chem Eng J 103:133–145

    CAS  Article  Google Scholar 

  36. Chu H, Wei L, Cui R, Wang J, Li Y (2010) Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord Chem Rev 254:1117–1120

    CAS  Article  Google Scholar 

  37. Chuang C-L, Chiang P-C, Chang EE (2003) Kinetics of benzene adsorption onto activated carbon. Environ Sci Pollut Res 10:6–8

    CAS  Article  Google Scholar 

  38. Clarke EA, Anliker R (1980) Organic dyes and pigments. In: The handbook of environmental chemistry, vol. 3. Part A. Anthropogenic compounds. Springer, New York

  39. Coughlin RW, Ezra FS (1968) Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environ Sci Technol 2:291–297

    CAS  Article  Google Scholar 

  40. Crespo D, Yang RT (2006) Adsorption of organic vapors on single-walled carbon nanotubes. Ind Eng Chem Res 45:5524–5530

    CAS  Article  Google Scholar 

  41. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    CAS  Article  Google Scholar 

  42. Cuentas-Gallegos AK, Martínez-Rosales R, Rincón ME, Hirata GA, Orozco G (2006) Design of hybrid materials based on carbon nanotubes and polyoxometalates. Opt Mater 29:126–133

    CAS  Article  Google Scholar 

  43. Dabrowski A (2001) Adsorption, from theory to practice. Adv Colloid Interf Sci 93:135–224

    CAS  Article  Google Scholar 

  44. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58:1049–1070

    CAS  Article  Google Scholar 

  45. Datye, Wu KH, Gomes G, Monroy V, Lin HT, Jozef V, Vanmeensel K (2010) Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP)–multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on zirconia particles. Compos Sci Technol 70:2086–2092

    CAS  Article  Google Scholar 

  46. Diao Y, Walawender WP, Fan LT (2002) Activated carbons prepared fromphosphoric acid activation of grain sorghum. Bioresour Technol 81:45–52

    CAS  Article  Google Scholar 

  47. Droste RL (1997) Theory and practice of water and wastewater treatment. Wiley, New York

    Google Scholar 

  48. Dursun AY, Kalayci CS (2005) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. J Hazard Mater 123:151–157

    CAS  Article  Google Scholar 

  49. Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110:1348–1352

    CAS  Article  Google Scholar 

  50. Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scr Mater 58:906–909

    CAS  Article  Google Scholar 

  51. Fang PF, Zeng ZR, Fan JH, Chen YY (2000) Synthesis and characteristics of C60 fullerene polysiloxane stationary phase for capillary gas chromatography. Chromatogr Abstr 867:177–185

    CAS  Article  Google Scholar 

  52. Ferner DJ (2001) Toxicity, heavy metals. EMed J 2(5):1

    Google Scholar 

  53. Figueroa RA, Mackay AA (2005) Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ Sci Technol 39:6664–6671

    CAS  Article  Google Scholar 

  54. Figueroa RA, Leonard A, Mackay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483

    CAS  Article  Google Scholar 

  55. Flahaut E, Peigney A, Laurent C, MarlieRe C, Chastel F, Rousset A (2000) Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48:3803–3812

    CAS  Article  Google Scholar 

  56. Franklin LB (1991) Wastewater engineering: treatment, disposal and reuse. McGraw Hill, New York

    Google Scholar 

  57. Freundlich HMF (1906) Uber die adsorption in losungen. J Phys Chem 57:385–470

    CAS  Google Scholar 

  58. Gallego M, Petit de Pefia Y, Valcarcel M (1994) Fullerenes as sorbent materials for metal preconcentration. Anal Chem 66:4074–4078

    CAS  Article  Google Scholar 

  59. Gao B, Peng C, Chen GZ, Puma GL (2008) Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol–gel method. Appl Catal B Environ 85:17–23

    CAS  Article  Google Scholar 

  60. Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. J Hazard Mater 140:60–68

    CAS  Article  Google Scholar 

  61. Gaspard S, Altenor S, Dawson EA, Barnes P, Ouensanga A (2007) Activated carbon from vetiver roots: gas and liquid adsorption studies. J Hazard Mater 144:73–81

    CAS  Article  Google Scholar 

  62. Gavalas VG, Chaniotakis NA (1998) C60 Fullerene mediated amperometric biosensors. Anal Chim Acta 409:131–135

    Article  Google Scholar 

  63. Geng Q, Guo Q, Cao C, Wang L (2008) Investigation into nanoTiO2/ACSPCR for decomposition of aqueous hydroquinone. Ind Eng Chem Res 47:2561–2568

    CAS  Article  Google Scholar 

  64. Glausch, Hirsch A, Lamparth I, Schurig V (1998) Retention behaviour of polychlorinated biphenyls on polysiloxane-anchored C60 in gas chromatography. Chromatogr A 809:252–257

    CAS  Article  Google Scholar 

  65. Goering J, Kadossov E, Burghaus U (2008) Adsorption kinetics of alcohols on single wall carbon nanotubes: an ultra high vacuum surface chemistry study. J Phys Chem C 112:10114–10124

    CAS  Article  Google Scholar 

  66. Golovnya RV, Terenina MB, Ruchkina EL, Karnatsevich VL (1993) Fullerene C60 as a new stationary-phase in capillary gas-chromatography. Mendeleev Commun 119:231–233

    Article  Google Scholar 

  67. Gondal MA, Drmosh QA, Saleh TA (2009) Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl Surf Sci 256:298–304

    CAS  Article  Google Scholar 

  68. Gong R, Li M, Yang C, Sun Y, Chen J (2005) Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J Hazard Mater B 121:247–250

    CAS  Article  Google Scholar 

  69. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu Q, Zhou WJ, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    CAS  Article  Google Scholar 

  70. Gotovac S, Hattori Y, Noguchi D, Miyamoto J, Kanamaru M, Utsumi S, Kanoh H, Kaneko K (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. J Phys Chem B 110:16219–16224

    CAS  Article  Google Scholar 

  71. Gotovac S, Song L, Kanoh H, Kaneko K (2007) Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloid Surf 300:117–121

    CAS  Article  Google Scholar 

  72. Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Voltammetric determination of uric acid at a fullerene-C60-modified glassy carbon electrode. Electroanalysis 17(24):2217–2223

    CAS  Article  Google Scholar 

  73. Goyal RN, Gupta VK, Bachheti N (2007a) Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta 71(3):1110–1117

    CAS  Article  Google Scholar 

  74. Goyal RN, Gupta VK, Bachheti N (2007b) Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone. Anal Chim Acta 597:82–89

    Google Scholar 

  75. Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008a) Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanalysis 20:757–764

    CAS  Article  Google Scholar 

  76. Goyal RN, Oyama M, Gupta VK, Singh SP, Chatterjee S (2008b) Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sensors Actuators B Chem 134:816–821

    CAS  Article  Google Scholar 

  77. Goyal RN, Gupta VK, Chatterjee S (2009) Fullerene–C60–modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens Bioelectron 24:1649–1654

    CAS  Article  Google Scholar 

  78. Gu C, Karthikeyan KG (2005) Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol 39:2660–2667

    CAS  Article  Google Scholar 

  79. Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42(3):766–770

    CAS  Article  Google Scholar 

  80. Gupta VK, Imran A (2004) Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste. J Colloid Interface Sci 27:21–28

    Google Scholar 

  81. Gupta VK, Rastogi A (2008a) Equilibrium and kinetic modeling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153(1–2):759–766

    CAS  Article  Google Scholar 

  82. Gupta VK, Rastogi A (2008b) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414

    CAS  Article  Google Scholar 

  83. Gupta VK, Rastogi A (2008c) Biosorption of lead from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative sudy. Colloids Surfaces B Biointerfaces 64:170–178

    Google Scholar 

  84. Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163(1):396–402

    CAS  Article  Google Scholar 

  85. Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash — a low cost adsorbent. Ind Eng Chem Res 45(25):6619–6624

    Article  CAS  Google Scholar 

  86. Gupta VK, Saleh TA(2011a) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212

    Google Scholar 

  87. Gupta VK, Saleh TA(2011b) Functionalization of tungsten oxide into MWCNT and its application as a novel catalyst for sun-light-induced degradation of rhodamine B. J Colloids Interface Sci 362:337–344

  88. Gupta VK, Jain AK, Singh LP, Khurana U (1997a) Porphyrins as carrier in PVC based membrane potentiometric sensors for Nickel (II). Anal Chim Acta 355:33–41

    CAS  Article  Google Scholar 

  89. Gupta VK, Srivastava SK, Mohan D, Sharma S (1997b) Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manag 17:517–522

    CAS  Article  Google Scholar 

  90. Gupta VK, Mohan D, Sharma S (1998) Removal of lead from wastewater using bagasse fly ash-a sugar industry waste material. Sep Sci Technol 33:1331–1343

    CAS  Article  Google Scholar 

  91. Gupta VK, Mangla R, Khurana U, Kumar P (1999) Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor. Electroanalysis 11(8):573–576

    CAS  Article  Google Scholar 

  92. Gupta VK, Srivastava SK, Tyagi R (2000) Design parameters for the treatment of phenolic waste by carbon columns (obtained from fertilizer waste material). Water Res 34(5):1543–1550

    CAS  Article  Google Scholar 

  93. Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminum industry waste. Water Res 35:1125–1134

    CAS  Article  Google Scholar 

  94. Gupta VK, Mangla R, Agarwal S (2002) Pb (II) selective potentiometric sensor based on 4-tert-butylcalix[4]arene in PVC matrix. Electroanalysis 14:1127–1132

    CAS  Article  Google Scholar 

  95. Gupta VK, Prasad R, Kumar A (2003) Preparation of ethambutol-copper (II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta 60:149–160

    CAS  Article  Google Scholar 

  96. Gupta VK, Singh P, Rahman N (2004) Adsorption behavior of Hg(II), Pb(II) and Cd(II) from aqueous solution on duolite C-433: a synthetic resin. J Colloid Interface Sci 275:398–402

    CAS  Article  Google Scholar 

  97. Gupta VK, Chandra S, Lang H (2005) A highly selective mercury electrode based on a diamine donor ligand. Talanta 66:575–580

    Google Scholar 

  98. Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006a) Chromium (III)-selective sensor based on tri-o-thymotide in PVC matrix. Sensors Actuators B 113(1):182–186

    CAS  Article  Google Scholar 

  99. Gupta VK, Mittal A, Gajbe V, Mittal J (2006b) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45(4):1446–1453

    CAS  Article  Google Scholar 

  100. Gupta VK, Mittal A, Kurup L, Mittal J (2006c) Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interface Sci 293:16–26

    CAS  Article  Google Scholar 

  101. Gupta VK, Mittal A, Kurup L, Mittal J (2006d) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci, 304:52–57

    Google Scholar 

  102. Gupta VK, Ali I, Saini V (2007a) Defluoridation of wastewaters using waste carbon slurry. Water Res 41(15):3307–3316

    CAS  Article  Google Scholar 

  103. Gupta VK, Jain R, Varshney S (2007b) Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk — an agricultural waste. J Hazard Mater 142(1–2):443–448

    CAS  Article  Google Scholar 

  104. Gupta VK, Jain R, Varshney S (2007c) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci 312(2):292–296

    CAS  Article  Google Scholar 

  105. Gupta VK, Singh AK, Gupta B (2007d) Schiff bases as cadmium (II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583:340–348

    Google Scholar 

  106. Gupta VK, Al Khayat M, Singh AK, Manoj A, Pal K (2009a) Nano level detection of Cd (II) using poly(vinyl chloride) based membranes of Schiff bases. Anal Chim Acta 634(1):36–43

    CAS  Article  Google Scholar 

  107. Gupta VK, Goyal RN, Sharma RA (2009b) Comparative studies on neodymium (III)-selective membrane sensors. Anal Chim Acta 647:66–71

    CAS  Article  Google Scholar 

  108. Gupta VK, Goyal RN, Sharma RA (2009c) Novel alizarin sensor for determination of vanadium, zirconium and molybdenum. Int J Electrochem Sci 4:156–172

    CAS  Google Scholar 

  109. Gupta VK, Mittal A, Malviya A, Mittal J (2009d) Adsorption of carmoisine A from wastewater using waste materials — bottom ash and deoiled soya. J Colloid Interface Sci 335(1):24–33

    CAS  Article  Google Scholar 

  110. Gupta VK, Jain R, Siddiqui MN, Saleh TA, Agarwal S, Malati S, Pathak D (2010a) Equilibrium and thermodynamic studies on the adsorption of the dye rhodamine-B onto mustard cake and activated carbon. J Chem Eng Data 55:5225–5229

    CAS  Article  Google Scholar 

  111. Gupta VK, Rastogi A, Nayak A (2010b) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342(1):135–141

    CAS  Article  Google Scholar 

  112. Gupta VK, Rastogi A, Nayak A (2010c) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342(2):533–539

    Google Scholar 

  113. Gupta VK, Agarwal S, Saleh TA (2011a) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212

    CAS  Article  Google Scholar 

  114. Gupta VK, Agarwal S, Saleh TA (2011b) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    CAS  Article  Google Scholar 

  115. Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011c) Pesticides removal from wastewater by activated carbon prepared from waste rubber tire. Water Res 45(13):4047–4055

    CAS  Article  Google Scholar 

  116. Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011d) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye–Acid Blue 113. J Hazard Mater 186(1):891–901

    CAS  Article  Google Scholar 

  117. Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012a) Chemical treatment technologies for waste-water recycling – an overview. RSC Adv 2:6380–6388

    CAS  Article  Google Scholar 

  118. Gupta VK, Ali I, Saleh TA, Siddiqui MN, Agarwal S (2012b) Chromium removal from water by activated carbon developed from waste rubber tires. Environ Sci Pollut Res. doi:10.1007/s11356-012-0950-9

  119. Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012c) Photo-catalytic degradation of toxic dye Amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17

    CAS  Article  Google Scholar 

  120. Gurses A, Dogar C, Karaca S, Acikyildiz M, Bayrak R (2006) Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye. J Hazard Mater B131:254–259

    Article  CAS  Google Scholar 

  121. Haghseresht F, Nouri S, Finnerty JJ, Lu GQ (2002) Effects of surface chemistry on aromatic compound adsorption from dilute aqueous solutions by activated carbon. J Phys Chem B106:10935–10943

    Google Scholar 

  122. Hameed BH, Din ATM, Ahmad AL (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141:819–825

    CAS  Article  Google Scholar 

  123. Han Y, Quan X, Chen S, Zhao H, Cui C, Zhao Y (2006) Electrochemically enhanced adsorption of aniline on activated carbon fibers. Sep Sci Technol 50:365–372

    CAS  Google Scholar 

  124. Hirata H, Kawasaki N, Nakamura T, Matsumoto K, Kabayama M, Tamura T, Tanada S (2002) Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment. J Colloid Interface Sci 254:17–22

    CAS  Article  Google Scholar 

  125. Hu Z, Srinivasan MP (2001) Mesoporous high-surface-area activated carbon. Microporous Mesoporous Mater 43:267–275

    CAS  Article  Google Scholar 

  126. Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550

    CAS  Article  Google Scholar 

  127. Hu J, Shao D, Chen C, Sheng G, Ren X, Wang X (2011a) Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite. J Hazard Mater 185:463–471

    CAS  Article  Google Scholar 

  128. Hu J, Zhao D, Wang X (2011b) Removal of Pb(II) and Cu(II) from aqueous solution using multiwalled carbon nanotubes/iron oxide magnetic composites. Water Sci Technol 63:917–923

    CAS  Google Scholar 

  129. Idris AM, Ibrahim A, Abulkibash AM, Saleh TA, Ibrahim K (2011) Rapid inexpensive assaymethod for verapamil by spectrophotometric sequential injection analysis. Drug Test Anal 3:380–386

    CAS  Article  Google Scholar 

  130. Jain K, Gupta VK, Khurana U, Singh LP (1997) A new membrane sensor for UO2+, based on 2-hydroxyacetophenoneoxime–thioureatrioxane resin. Electroanalysis 9:857–860

    CAS  Article  Google Scholar 

  131. Jain AK, Gupta VK, Bhatnagar A, Suhas (2003) A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep Sci Technol 38(2):463–481

    CAS  Article  Google Scholar 

  132. Jain AK, Gupta VK, Jain S, Suhas (2004) Removal of chlorophenols using industrial wastes. Environ Sci Technol 38(4):1195–1200

    CAS  Article  Google Scholar 

  133. Jain R, Gupta VK, Sikarwar S (2010) Adsorption and desorption studies on hazardous dye naphthol Yellow S. J Hazard Mater 182:749–756

    CAS  Article  Google Scholar 

  134. Jain R, Gupta VK, Saleh TA, Nayak A, Malathi S, Agarwal S (2011) Equilibrium and thermodynamic studies on the removal and recovery of Safranine-T from industrial effluents. Sep Sci Technol 46:839–846

    Article  CAS  Google Scholar 

  135. Ji LL, Chen W, Bi J, Zheng SR, Xu ZY, Zhu DQ, Alvarez PJ (2010) Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem 29:2713–2719

    CAS  Article  Google Scholar 

  136. Jin B, Wilén BM, Lant P (2003) A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chem Eng J 95:221–234

    CAS  Article  Google Scholar 

  137. Jinno K, Tanabe K, Saito Y, Nagashima H (1997) Separation of polycyclic aromatic hydrocarbons with various C60 fullerene bonded silica phases in microcolumn liquid chromatography. Analyst 122:787–791

    CAS  Article  Google Scholar 

  138. John DZ (1990) Handbook of drinking water quality: standards and controls. Van Nostrand Reinhold, New York

    Google Scholar 

  139. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons e a comparative study. Dyes Pigments 51:25–40

    CAS  Article  Google Scholar 

  140. Khan AR, AL-Bahri TA, AL-Haddad A (1997) Adsorption of phenol based organicadsorption of phenol based orgnic pollutants on activated carbon from multi-component dilute aqueous solutions. Water Res 31:2102–2112

    CAS  Article  Google Scholar 

  141. Kjellstrom T, Shiroishi K, Erwin PE (1977) Urinary beta./sub 2/- microglobulin excretion among people exposed to cadmium in the general environment. Environ Res 13:318–344

    CAS  Article  Google Scholar 

  142. Kondratyuk P, Yates JT Jr (2005) Desorption kinetic detection of different adsorption sites on opened carbon single walled nanotubes: the adsorption of n-nonane and CCl4. Chem Phys Lett 410:324–329

    CAS  Article  Google Scholar 

  143. Kuo CY (2009) Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. J Hazard Mater 163:239–244

    CAS  Article  Google Scholar 

  144. Kuo CY, Wu CH, Wu JY (2008) Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci 327:308–315

    CAS  Article  Google Scholar 

  145. Laws EA (2000) Aquaticpollution: an introductory text, 3rd edn. Wiley, New York

    Google Scholar 

  146. Lei S, Miyamoto JI, Kanoh H, Nakahigashi Y, Kaneko K (2006) Enhancement of the methylene blue adsorption rate for ultramicroporous carbon fiber by addition of mesopores. Carbon 44:1884–1890

    CAS  Article  Google Scholar 

  147. Li H, Zhou B, Lin Y, Gu L, Wang W, Fernando S, Kumar S, Allard LF, Sun YP (2004a) Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc 126(2004):1014–1015

    CAS  Article  Google Scholar 

  148. Li YH, Di ZC, Luan ZK, Ding J, Zuo H, Wu XQ, Xu CL, Wu DH (2004b) Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics. J Environ Sci (China) 16:208–211

    CAS  Google Scholar 

  149. Li C, Zhang Y, Wang X, Zhao J, Chen W (2011) Removal and recovery of lead (II) ions from contaminated licorice extracts using oxidized multi-walled carbon nanotubes. J Nanosci Nanotechnol 11:9731–9736

    CAS  Article  Google Scholar 

  150. Ling S, Tian H, Wang S, Rufford T, Zhu ZH, Buckley CE (2011) KOH catalysed preparation of activated carbon aerogels for dye adsorption. J Colloid Interface Sci 357:157–162

    CAS  Article  Google Scholar 

  151. Liu Z, Shen Z, Zhu T, Hou S, Ying L, Shi Z, Gu Z (2000) Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir 16:3569–3572

    CAS  Article  Google Scholar 

  152. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    CAS  Article  Google Scholar 

  153. Lu C, Chiu H (2006) Adsorption of zinc (II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145

    CAS  Article  Google Scholar 

  154. Lu C, Chung YL, Chang KF (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:1183–1189

    CAS  Article  Google Scholar 

  155. Lunge S, Thakre D, Kamble S, Labhsetwar N, Rayalu S (2012) Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste. J Hazard Mater 237–238:161–169

    Article  CAS  Google Scholar 

  156. Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater 171:340–347

    CAS  Article  Google Scholar 

  157. Lv T, Pan L, Liu X, Sun Z (2012) Enhanced photocatalytic degradation of methylene blue by ZnO–reduced graphene oxide–carbon nanotube composites synthesized via microwave-assisted reaction. Catal Sci Technol 2:2297–2301

    CAS  Article  Google Scholar 

  158. Machado FM, Bergmann CP, Fernandes TH, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131

    CAS  Article  Google Scholar 

  159. Machado FM, Bergmann CP, Lima EC, Royer B, de Souza FE, Jauris IM, Calvete T, Fagan SB (2012) Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Phys Chem Chem Phys 21:11139–11153

    Article  CAS  Google Scholar 

  160. Madden S, Hochella MF, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim Cosmochim Acta 70:4095–4104

    CAS  Article  Google Scholar 

  161. Madhava Rao M, Ramesh A, Purna Chandra Rao G, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J Hazard Mater 129:123–129

    CAS  Article  Google Scholar 

  162. Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    CAS  Article  Google Scholar 

  163. Miguel GS, Lambert SD, Graham NJD (2001) The regeneration of field-spent granular activated carbon. Water Res 35:2740–2748

    CAS  Article  Google Scholar 

  164. Mittal A, Kurup L, Gupta VK (2005) Use of waste materials — bottom ash and de-oiled soya, as potential adsorbents for the removal of amaranth from aqueous solutions. J Hazard Mater 117(2–3):171–178

    CAS  Article  Google Scholar 

  165. Mittal A, Gupta VK, Malviya A, Mittal J (2008) Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (bottom ash and de-oiled soya). J Hazard Mater 151(2–3):821–832

    CAS  Article  Google Scholar 

  166. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473

    Google Scholar 

  167. Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42:83–94

    CAS  Article  Google Scholar 

  168. Mui ELK, Cheung WH, Valix M, McKay G (2010) Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. J Colloid Interface Sci 347:290–300

    CAS  Article  Google Scholar 

  169. Muranaka CT, Julcour C, Wilhelm AM, Delmas H, Nascimento CAO (2010) Regeneration of activated carbon by (photo)-Fenton oxidation. Ind Eng Chem Res 49:989–995

    CAS  Article  Google Scholar 

  170. Namane A, Mekarzia A, Benrachedi K, Belhaneche-Bensemra N, Hellal A (2005) Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 andH3PO4. J Hazard Mater 119:189–194

    Google Scholar 

  171. Nguyen TD, Phan NH, Do MH, Ngo KT (2011) Magnetic Fe2MO4 (M: Fe, Mn) activated carbons: fabrication, characterization, and heterogeneous Fenton oxidation of methyl orange. J Hazard Mater 185:653–661

    CAS  Article  Google Scholar 

  172. Noh JS, Schwarz JA (1990) Estimation of the point of zero charge of simple oxides by mass titration. J Colloid Interface Sci 130:157–164

    Article  Google Scholar 

  173. Ntim SA, Mitra S (2012) Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J Colloid Interface Sci 375:154–159

    Article  CAS  Google Scholar 

  174. Okawa K, Suzuki K, Takeshita T, Nakano K (2007) Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation. Water Res 41:1045–1051

    CAS  Article  Google Scholar 

  175. Oliveira LCA, Rios RVRA, Fabris JD, Garg VK, Sapag K, Lago RM (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40:2177–2183

    CAS  Article  Google Scholar 

  176. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    CAS  Article  Google Scholar 

  177. Pavoni B, Drusian D, Giacometti A, Zanette M (2006) Assessment of organic chlorinated compound removal from aqueous matrices by adsorption on activated carbon. Water Res 40:3571–3579

    CAS  Article  Google Scholar 

  178. Pelekani C, Snoeyink VL (2001) A kinetic and equilibrium study of competitive adsorption between atrazine and Congo red dye on activated carbon: the importance of pore size distribution. Carbon 39:25–37

    CAS  Article  Google Scholar 

  179. Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:154–158

    CAS  Article  Google Scholar 

  180. Pereira MFR, Soares SF, Orfao JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41:811–821

    CAS  Article  Google Scholar 

  181. Petit de Pefia Y, Gallego M, Valcarcel M (1995) Preconcentration of copper traces on C60–C70 fullerenes by formation of ion pairs and chelates. Anal Chem 67:2524–2529

    Article  Google Scholar 

  182. Petit de Pefia Y, Gallego M, Valcarcel M (1997) Fullerene: a sensitive and selective sorbent for the continuous preconcentration and atomic absorption determination of cadmium. Anal Atom Spectrosc 12:453–457

    Article  Google Scholar 

  183. Pillay K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166:1067–1075

    CAS  Article  Google Scholar 

  184. Prakash Kumar BG, Shivakamy K, Miranda LR, Velan M (2006) Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics. J Hazard Mater 136:922–929

    CAS  Article  Google Scholar 

  185. Pyrzynska K (2008) Carbon nanotubes as a new solid-phase extraction material for removal and enrichment of organic pollutants in water. Sep Purif Rev 37:372–389

    CAS  Article  Google Scholar 

  186. Qu S, Huang F, Yu S, Chen G, Kong J (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater 160:643–647

    CAS  Article  Google Scholar 

  187. Randall JM, Hautala E, Waiss Jr AC (1974) Removal and recycling of heavy metal ions from mining and industrial waste streams with agricultural by-products. In: Proceedings of the fourth mineral waste utilization symposium. Chicago

  188. Rengaraj S, Moon SH, Sivabalan R, Arabindoo B, Murugesan V (2002) Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat. J Hazard Mater 89:185–196

    CAS  Article  Google Scholar 

  189. Rengaraj S, Jei-Won Y, Younghun K, Won-Ho K (2007) Application of Mg-mesoporous alumina prepared by using magnesium stearate as a template for the removal of nickel: kinetics, isotherm and error analysis. Ind Eng Chem Res 46:2834–2842

    CAS  Article  Google Scholar 

  190. Ress NB, Witt KL, Xu J, Haseman JK, Bucher JR (2002) Micronucleus induction in mice exposed to diazoaminobenzene or its metabolites, benzene and aniline: implications for diazoaminobenzene carcinogenicity. Mutat Res Genet Toxicol Environ Mutagen 521:201–208

    CAS  Article  Google Scholar 

  191. Sabio E, González E, González JF, González-García CM, Ramiro A, Gañan J (2004) Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon 42:2285–2293

    CAS  Article  Google Scholar 

  192. Saito Y, Ohta H, Terasaki H (1995) Separation ofpolycyclic aromatic hydrocarbons with a C60 bonded silica phase in microcolumn liquid chromatography High-Res. Chromatogr 18:569–572

    CAS  Google Scholar 

  193. Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257:7746–7751

    CAS  Article  Google Scholar 

  194. Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci 362:337–344

    CAS  Article  Google Scholar 

  195. Saleh TA, Gupta VK (2012a) Characterization of the bonding interaction between alumina and nanotube in MWCNT/alumina composite. Curr Nanosci 8:739–743

    CAS  Article  Google Scholar 

  196. Saleh TA, Gupta VK (2012b) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ Sci Pollut Res 19:1224–1228

    CAS  Article  Google Scholar 

  197. Saleh TA, Gupta VK (2012c) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multiwalled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106

    CAS  Article  Google Scholar 

  198. Saleh TA, Gupta VK (2012d) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89:245–251

    CAS  Article  Google Scholar 

  199. Saleh TA, Gondal MA, Drmosh QA (2010) Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnol 21:495705

    Article  CAS  Google Scholar 

  200. Saleh TA, Agarwal S, Gupta VK (2011a) Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B Environ 106:46–53

    CAS  Google Scholar 

  201. Saleh TA, Gondal MA, Drmosh QA, AL-yamani A (2011b) Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem Eng J 166:407–412

    CAS  Article  Google Scholar 

  202. Schelm S, Smith GB (2003) Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing. Appl Phys Lett 82:4346–4348

    CAS  Article  Google Scholar 

  203. Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279:307–313

    CAS  Article  Google Scholar 

  204. Senthilkumaar S, Varadarajan PR, Porkodi K, Subbhuraam CV (2005) Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. J Colloid Interface Sci 284:78–82

    CAS  Article  Google Scholar 

  205. Sheng G, Li J, Shao D, Hu J, Chen C, Chen Y, Wang X (2010) Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J Hazard Mater 178:333–340

    CAS  Article  Google Scholar 

  206. Shih YH, Li MS (2008) Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. J Hazard Mater 154:21–28

    CAS  Article  Google Scholar 

  207. Shih JS, Chao YC, Sung MF (2001) Piezoelectric crystal membrane chemical sensors based on fullerene C60. Sensors Actuators B 76:347–353

    CAS  Article  Google Scholar 

  208. Singh KP, Mohan D, Sinha S, Tondon GS, Gosh D (2003) Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind Eng Chem Res 42:1965–1976

    CAS  Article  Google Scholar 

  209. Singh KP, Malik A, Sinha S, Ojha P (2008) Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J Hazard Mater 150:626–641

    CAS  Article  Google Scholar 

  210. Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Caesium PVC-Crown (dibenzo-24-crown-8) based membrane sensor. Anal Proc Incl Anal Commun 32:21–23

    CAS  Article  Google Scholar 

  211. Stalling DL, Guo CY, Saim S (1993) Surface-linked-C(60/70)polystyrene divinylbenzene beads as a new chromatographic material for enrichment of coplanar PCBS. Chromatogr Sci 31:265–278

    CAS  Google Scholar 

  212. Stephen BI, Sulochana N (2002) Basic dye adsorption on a low cost carbonaceous sorbent —kinetic and equilibrium studies. Indian J Chem Technol 9:201–208

    Google Scholar 

  213. Stephen BI, Sulochana N (2006) Use of jackfruit peel carbon (JPC) for adsorption of rhodamine-B, a basic dye from aqueous solution. Indian J Chem Technol 13:17–23

    Google Scholar 

  214. Sun Y, Yang S, Sheng G, Guo Z, Wang X (2012) The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Environ Radioact 105:40–47

    CAS  Article  Google Scholar 

  215. Sze MFF, Lee VKC, McKay G (2008) Simplified fixed bed column model for adsorption of organic pollutants using tapered activated carbon columns. Desalination 218:323–333

    CAS  Article  Google Scholar 

  216. Tarun KN, Ashim KB, Sudip KD (2009) Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J Colloid Interface Sci 333:14–26

    Article  CAS  Google Scholar 

  217. Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185:140–147

    CAS  Article  Google Scholar 

  218. Tsai WT, Hsu HC, Su TY, Lin KY, Lin CM, Dai TH (2007) The adsorption of cationic dye from aqueous solution onto acid-activated andesite. J Hazard Mater 147:1056–1062

    CAS  Article  Google Scholar 

  219. Tseng RL (2007) Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation. J Hazard Mater 147:1020–1027

    CAS  Article  Google Scholar 

  220. Valdes H, Sanchez-Polo M, Rivera-Utrilla J, Zaror CA (2002) Effect of ozone treatment on surface properties of activated carbon. Langmuir 18:2111–2116

    CAS  Article  Google Scholar 

  221. Walker GM, Weatherley LR (2000) Textile wastewater treatment using granular activated carbon adsorption in fixed beds. Sep Sci Technol 35:1329–1341

    CAS  Article  Google Scholar 

  222. Wang S, Zhu ZH (2007) Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pigments 75:306–314

    CAS  Article  Google Scholar 

  223. Wang LG, Wang X, Ottova AL, Tien HT (2005a) Iodide sensitive sensor based on a supported bilayer lipid membrane containing a cluster form of carbon (fullerene C60). Electroanalysis 8:1020–1022

    Article  Google Scholar 

  224. Wang S, Zhu ZH, Coomes A, Haghseresht F, Lu GQ (2005b) The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. J Colloid Interface Sci 284:440–446

    CAS  Article  Google Scholar 

  225. Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B (2005c) High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Technol 39:7684–7691

    CAS  Article  Google Scholar 

  226. Wu W, Jiang W, Xia W, Yang K, Xing B (2012) Influence of pH and surface oxygen-containing groups on multiwalled carbon nanotubes on the transformation and adsorption of 1-naphthol. J Colloid Interface Sci 374:226–231

    CAS  Article  Google Scholar 

  227. Xu D, Tan X, Chen C, Wang X (2008) Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater 154:407–416

    CAS  Article  Google Scholar 

  228. Xu J, Lv X, Li J, Li Y, Shen L, Zhou H, Xu X (2012) Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support. J Hazard Mater 225–226:36–45

    Article  CAS  Google Scholar 

  229. Yang K, Xing B (2006) Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ Pollut 145:529–537

    Article  CAS  Google Scholar 

  230. Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40:1855–1861

    CAS  Article  Google Scholar 

  231. Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166:109–116

    CAS  Article  Google Scholar 

  232. Youssef AM, Radwan NRE, Abdel-Gawad I, Singer GAA (2004) Textural properties of activated carbons from apricot stones. Colloids Surf 252:143–151

    Google Scholar 

  233. Zhan JJ, Kolesnichenko I, Sunkara B, He JB, McPherson GL, Piringer G, John VT (2011) Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environ Sci Technol 45:1949–1954

    CAS  Article  Google Scholar 

  234. Zhang J, Lee JK, Wu V, Murray RW (2003) Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett 3:403–407

    CAS  Article  Google Scholar 

  235. Zhang M, Zhao QL, Bai X, Ye ZF (2010) Adsorption of organic pollutants from coking wastewater by activated coke. Colloids Surf, A Physicochem Eng Asp 362:140–146

    CAS  Article  Google Scholar 

  236. Zhang L, Xu T, Liu X, Zhang Y, Jin H (2011) Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions. J Hazard Mater 197:389–396

    CAS  Article  Google Scholar 

  237. Zhao K, Wang Z, Shi Z, Gu Z, Jinj Z (2011) Filling double-walled carbon nanotubes with WO3 and W nanowires via confined chemical reactions. J Nanosci Nanotechnol 11:2278–2282

    CAS  Article  Google Scholar 

Download references

Acknowledgments

T. Saleh acknowledges the support of Chemistry department, King Fahd University of Petroleum and Minerals (KFUPM) Dhahran, Saudi Arabia and V. K. Gupta acknowledges the support of DST Gov. of India, New Delhi, for supporting through WTI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Gupta.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, V.K., Saleh, T.A. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview. Environ Sci Pollut Res 20, 2828–2843 (2013). https://doi.org/10.1007/s11356-013-1524-1

Download citation

Keywords

  • Porous carbon
  • Carbon nanotubes
  • Fullerene
  • Adsorption
  • Pollutants