Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 8, pp 5106–5113 | Cite as

Assessment of ozone variations and meteorological influences in a tourist and health resort area on the island of Mali Lošinj (Croatia)

  • Elvira Kovač-AndrićEmail author
  • Vlatka Gvozdić
  • Glenda Herjavić
  • Hasan Muharemović
Research Article

Abstract

The purpose of this study was to investigate ozone, variations, and its correlation with meteorological parameters at a remote location on the Mali Lošinj Island, which has been a tourist and health resort area in the northern Adriatic. The measured data are discussed in relation to the EU guidelines (Directive 2002/3/EC; Directive 2008/50/EC). In order to characterize ambient air with respect to ozone vegetation injury and photochemical pollution, we calculated accumulated dose over a threshold of 40 parts per billion index and two photochemical pollution indicators. The influence of local meteorological parameters on the measured ozone volume fractions was also investigated. We used the multivariate technique principal component analysis to trace correlations between measured ozone concentration and meteorological parameters.

Keywords

AOT40 index Frequency analysis Mali Lošinj Mediterranean Ozone PCA Photochemical pollution indicators Vegetation injury 

Notes

Acknowledgment

The authors acknowledge the Ministry of Science, Education and Sports of the Republic of Croatia for financial support, grant numbers 0098030 and 0982915-2947. We also thank the Croatian Meteorological and Hydrological Service for providing us with the meteorological data.

References

  1. Abdul-Wahab SA, Bakheit CS, Al-Alawi SM (2005) Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software 20(10):1263–1271CrossRefGoogle Scholar
  2. Adame JA, Lozano A, Bolívar JP, De la Morena BA, Contreras J, Godoy F (2008) Behavior, distribution and variability of surface ozone at an arid region in the south of Iberian Peninsula (Seville, Spain). Chemosphere 70(5):841–849CrossRefGoogle Scholar
  3. Alebić-Juretić A (2011) Ozone levels in the Rijeka Bay area, Northern Adriatic, Croatia, 1999–2007. Int J Remote Sens 33(2):335–345. doi: 10.1080/01431161.2010.490246 CrossRefGoogle Scholar
  4. Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28(8):949–964CrossRefGoogle Scholar
  5. Banja M, Papanastasiou DK, Poupkou A, Melas D (2012) Development of a short-term ozone prediction tool in Tirana area based on meteorological variables. Atmos Pollut Res 3:32–38Google Scholar
  6. Baumgarten M, Huber C, Bueker P, Emberson L, Dietrich H-P, Nunn AJ, Heerdt C, Beudert B, Matyssek R (2009) Are Bavarian Forests (southern Germany) at risk from ground-level ozone? Assessment using exposure and flux based ozone indices. Environ Pollut 157(7):2091–2107. doi: 10.1016/j.envpol.2009.02.012 CrossRefGoogle Scholar
  7. Božić M, Ivan K, Darko R (2006) Traffic counting on the roadways of Croatia in 2005—digest. Zagreb (in Croatian)Google Scholar
  8. Bytnerowicz A, Omasa K, Paoletti E (2007) Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ Pollut 147(3):438–445. doi: 10.1016/j.envpol.2006.08.028 CrossRefGoogle Scholar
  9. Cape JN (2008) Surface ozone concentrations and ecosystem health: past trends and a guide to future projections. Sci Total Environ 400(1–3):257–269. doi: 10.1016/j.scitotenv.2008.06.025 CrossRefGoogle Scholar
  10. Chen R, Chu C, Tan J, Cao J, Song W, Xu X, Jiang C, Ma W, Yang C, Chen B, Gui Y, Kan H (2010) Ambient air pollution and hospital admission in Shanghai, China. J Hazard Mater 181(1–3):234–240. doi: 10.1016/j.jhazmat.2010.05.002 CrossRefGoogle Scholar
  11. Cieslik SA (2004) Ozone uptake by various surface types: a comparison between dose and exposure. Atmos Environ 38(15):2409–2420. doi: 10.1016/j.atmosenv.2003.10.063 CrossRefGoogle Scholar
  12. Cvitaš T, Furger M, Girgzdiene R, Haszpra L, Kezele N, Klasinc L, Planinsek A, Pompe M, Prevot ASH, Scheel HE, Schuepbach E (2004) Spectral analysis of boundary layer ozone data from the EUROTRAC TOR network. J Geophys Res-Atmos 109(D02302):doi: 10.1029/2003jd003727 Google Scholar
  13. Directive 2002/3/EC of the European Parliament and of the Council relating to ozone in ambient air (12 February 2002). Official Journal of the European Communities, vol L 67Google Scholar
  14. Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for Europe (21 May 2008). Official Journal of the European Union, vol L 152Google Scholar
  15. Dueñas C, Fernández MC, Cañete S, Carretero J, Liger E (2002) Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. Sci Total Environ 299(1–3):97–113CrossRefGoogle Scholar
  16. Even-Paz Z, Efron D (2003) Determination of solar ultraviolet dose in the Dead Sea treatment of psoriasis. Israel Med Assoc J 5:87–88Google Scholar
  17. Ferretti M, Bussotti F, Calatayud V, Sanz M-J, Schaub M, Kraeuchi N, Petriccione B, Sanchez-Pena G, Ulrich E (2007) Ozone and forests in South-Western Europe. Environ Pollut 145(3):617–619. doi: 10.1016/j.envpol.2006.02.026 CrossRefGoogle Scholar
  18. Gvozdić V, Kovač-Andrić E, Brana J (2011) Influence of meteorological factors NO2, SO2, CO and PM10 on the voncentration of O3 in the urban atmosphere of Eastern Croatia. Environ Model Assess 16(5):491–501. doi: 10.1007/s10666-011-9256-4 CrossRefGoogle Scholar
  19. Kalabokas PD, Mihalopoulos N, Ellul R, Kleanthous S, Repapis CC (2008) An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean. Atmos Environ 42(34):7894–7906. doi: 10.106/j.atmosenv.2008.07.009 CrossRefGoogle Scholar
  20. Kalabokas PD, Repapis CC (2004) A climatological study of rural surface ozone in central Greece. Atmos Chem Phys 4(4):1139–1147. doi: 10.5194/acp-4-1139-2004 CrossRefGoogle Scholar
  21. Kalabokas PD, Volz-Thomas A, Brioude J, Thouret V, Cammas JP, Repapis CC (2007) Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe. Atmos Chem Phys Discuss 7(1):2249–2274. doi: 10.5194/acpd-7-2249-2007 CrossRefGoogle Scholar
  22. Klasinc L, Cvitaš T, McGlynn SP, Hu M, Tang XY, Zhang YH (2011) Photochemical pollution indicators in the subtropics. Croat Chem Acta 84(1):11–16. doi: 10.5562/cca1807 CrossRefGoogle Scholar
  23. Klasinc L, Kezele N, Pompe M, McGlynn SP (2008) Trends, distribution and frequency analysis of ozone data from three monitoring stations in Baton Rouge, Louisiana for the years 1995 to 2005. Croat Chem Acta 81(2):311–318Google Scholar
  24. Kley D, Geiss H, Mohnen VA (1994) Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe. Atmos Environ 28:149–158. doi: 10.1016/1352-2310(94)90030-2 CrossRefGoogle Scholar
  25. Kovač-Andrić E, Šorgo G, Kezele N, Cvitaš T, Klasinc L (2010) Photochemical pollution indicators-an analysis of 12 European monitoring stations. Environ Monit Assess 165(1–4):577–583. doi: 10.1007/s10661-009-0969-7 CrossRefGoogle Scholar
  26. Kovač-Andrić E, Brana J, Gvozdić V (2009) Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecol Inf 4(2):117–122CrossRefGoogle Scholar
  27. Kunst AE, Groenhof F, Anderson O, Borgan JK, Costa G, Desplanques G, Filakti H, Giraldes MD, Faggiano F, Harding S, Junker C, Martikainen P, Minder C, Nolan B, Pagnanelli F, Regidor E, Vagero D, Valkonen T, Mackenbach JP (1999) Occupational class and ischemic heart disease mortality in the United States and 11 European countries. Am J Public Health 89(1):47–53CrossRefGoogle Scholar
  28. Lengyel A, Héberger K, Paksy L, Bánhidi O, Rajkó R (2004) Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere 57(8):889–896CrossRefGoogle Scholar
  29. Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Fernández IG, Grünhage L, Harmens H, Hayes F, Karlsson P-E, Simpson D (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45(28):5064–5068CrossRefGoogle Scholar
  30. Moosa Y, Esterhyse DJ (2010) Heliotherapy: a South African perspective. S Afr Med J 100:728–733Google Scholar
  31. Notario A, Bravo I, Adame JA, Diaz-de-Mera Y, Aranda A, Rodriguez A, Dodriguez D (2012) Behavior and variability of local and regional oxidant levels (OX = O(3) + NO(2)) measured in a polluted area in central-southern of Iberian. Environ Sci Pollut Res 20:188–200. doi: 10.1007/sl1356-012-09741 CrossRefGoogle Scholar
  32. Paoletti E (2009) Ozone and urban forests in Italy. Environ Pollut 157(5):1506–1512CrossRefGoogle Scholar
  33. Prtenjak MT, Jeričević A, Nitis T, Alebić-Juretić A, Bencetić Klaić Z (2009) Atmospheric boundary layer characteristics during high ozone concentrations in the Rijeka Bay area. In: Kungolos A, Aravossis K, Karagiannidis A, Samaras P (eds)Proceedings of the Second International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 09) & SECOTOX Conference. University of Thessaly and National Technical University of Athens, Athens, 1177–1182Google Scholar
  34. Sánchez-Lorenzo A, Calbo J, Martin-Vide J (2008) Spatial and temporal trends in sunshine duration over Western Europe (1938–2004). J Clim 21:6089–6098. doi: 10.1175/2008JCLI2442.1 CrossRefGoogle Scholar
  35. Schürmann GJ, Algieri A, Hedgecock IM, Manna G, Pirrone N, Sprovieri F (2009) Modelling local and synoptic scale influences on ozone concentrations in a topographically complex region of Southern Italy. Atmos Environ 43:4424–4434. doi: 10.1016/j.atmosenv.2009.06.017 CrossRefGoogle Scholar
  36. Shutters ST, Balling RC Jr (2006) Weekly periodicity of environmental variables in Phoenix, Arizona. Atmos Environ 40(2):304–310CrossRefGoogle Scholar
  37. Stasić A, Batinac T, Komadina S (2004) Heliomarinotherapy in psoriasis. Acta Dermatovenerol Croat 12:51–54Google Scholar
  38. Statheropoulos M, Vassiliadis N, Pappa A (1998) Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmos Environ 32(6):1087–1095CrossRefGoogle Scholar
  39. Stedman JR (2004) The predicted number of air pollution related deaths in the UK during the August 2003 heatwave. Atmos Environ 38(8):1087–1090. doi: 10.1016/j.atmosenv.2003.11.011 CrossRefGoogle Scholar
  40. Velchev K, Cavalli F, Hjorth J, Marmer E, Vignati E, Dentener F, Raes F (2011) Ozone over the Western Mediterranean Sea – results from two years of shipborne measurements. Atmos Chem Phys 11(2):675–688. doi: 10.5194/acp-11-675-2011 CrossRefGoogle Scholar
  41. Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biol 15(2):396–424. doi: 10.1111/j.1365-2486.2008.01774.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elvira Kovač-Andrić
    • 1
    Email author
  • Vlatka Gvozdić
    • 2
  • Glenda Herjavić
    • 3
  • Hasan Muharemović
    • 3
  1. 1.Department of ChemistryUniversity of J. J. StrossmayerOsijekCroatia
  2. 2.Department of ChemistryUniversity of J. J. StrossmayerOsijekCroatia
  3. 3.Institute “Ruđer Bošković”ZagrebCroatia

Personalised recommendations