Environmental Science and Pollution Research

, Volume 20, Issue 7, pp 4659–4670 | Cite as

Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres

  • A. Manoukian
  • E. Quivet
  • B. Temime-Roussel
  • M. Nicolas
  • F. Maupetit
  • H. Wortham
Research Article

Abstract

Volatile organic compounds (VOCs) and particles emitted by incense sticks and candles combustion in an experimental room have been monitored on-line and continuously with a high time resolution using a state-of-the-art high sensitivity-proton transfer reaction-mass spectrometer (HS-PTR-MS) and a condensation particle counter (CPC), respectively. The VOC concentration–time profiles, i.e., an increase up to a maximum concentration immediately after the burning period followed by a decrease which returns to the initial concentration levels, were strongly influenced by the ventilation and surface interactions. The obtained kinetic data set allows establishing a qualitative correlation between the elimination rate constants of VOCs and their physicochemical properties such as vapor pressure and molecular weight. The emission of particles increased dramatically during the combustion, up to 9.1(±0.2) × 104 and 22.0(±0.2) × 104 part cm−3 for incenses and candles, respectively. The performed kinetic measurements highlight the temporal evolution of the exposure level and reveal the importance of ventilation and deposition to remove the particles in a few hours in indoor environments.

Keywords

Incense Candle Volatile organic compounds Aerosol HS-PTR-MS Indoor air quality 

Supplementary material

11356_2012_1394_MOESM1_ESM.doc (136 kb)
ESM 1(DOC 136 kb)

References

  1. AFNOR (2002) NF ISO 16000–3: Air intérieur ― Partie 3: Prélèvement et analyse: formaldéhyde, acétaldéhydeGoogle Scholar
  2. AFNOR (2005) NF ISO 16000–6: Air intérieur ― Partie 6: Dosage des composés organiques volatils dans l'air intérieur des locaux et enceintes d'essai par échantillonnage actif sur le sorbant Tenax TA, désorption thermique et chromatographie en phase gazeuse utilisant MS/FIDGoogle Scholar
  3. Afshari A, Matson U, Ekberg LE (2005) Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air 15:141–150CrossRefGoogle Scholar
  4. Akoua JJAA, Allard F, Beghein C, Collignan B, Millet JR (2004) Experimental and numerical studies on indoor air quality in a real environment. In: Proceedings of the Conference of the Air Infiltration and Ventilation Centre, 2004 Sept 15–17, Prague, Czech Republic, pp 203–214Google Scholar
  5. Bhangar S, Mullen NA, Hering SV, Kreisberg NM, Nazaroff WW (2011) Ultrafine particle concentrations and exposures in seven residences in northern California. Indoor Air 21:132–144CrossRefGoogle Scholar
  6. Buchbauer G, Jirovetz L, Wasicky M, Nikiforov A (1995) Volatiles of cold and burning fragrance candles with lavender and apple aromas. Flavour Frag J 10:233–237CrossRefGoogle Scholar
  7. Buhr K, van Ruth S, Delahunty C (2002) Analysis of volatile compounds by proton transfer reaction-mass spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds. Int J Mass Spectrom 221:1–7CrossRefGoogle Scholar
  8. Carslaw N (2007) A new detailed chemical model for indoor air pollution. Atmos Environ 41:1164–1179CrossRefGoogle Scholar
  9. Chang YC, Lee HW, Tseng HH (2007) The formation of incense smoke. J Aerosol Sci 38:39–51CrossRefGoogle Scholar
  10. Chuang HC (2010) Product characterisation of incense burning. Eurochamp-2. Report No.: E2-2010-03-08-0023Google Scholar
  11. Czakó G, Nagy B, Tasi G, Somogyi A, Šimunek J, Noga J et al (2009) Proton affinity and enthalpy of formation of formaldehyde. Int J Quantum Chem 09:2393–2409CrossRefGoogle Scholar
  12. de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257CrossRefGoogle Scholar
  13. Derudi M, Gelosa S, Sliepcevich A, Cattaneo A, Rota R, Cavallo D et al (2012) Emissions of air pollutants from scented candles burning in a test chamber. Atmos Environ 55:257–262CrossRefGoogle Scholar
  14. Eggert T, Hansen OC (2004) Survey and emission of chemical substances from incense. Survey of Chemical Substances in Consumer Products 39:1–136Google Scholar
  15. ERADB (2009) Chemical Kinetics Database on oxygenated VOCs [internet]. Orléans : ICARE-CNRS; c2006-08 [updated 2012 May 4]. Available from: http://www.era-orleans.org
  16. Fan Z, Weschler CJ, Han IK, Junfeng Z (2005) Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions. Atmos Environ 39:5171–5182CrossRefGoogle Scholar
  17. Géhin E, Ramalho O, Kirchner S (2008) Size distribution and emission rate measurements of fine and ultrafine particle from indoor human activities. Atmos Environ 42:8341–8352CrossRefGoogle Scholar
  18. Gilbert NL, Guay M, Gauvin D, Dietz RN, Chan CC, Lévesque B (2008) Air change rate and concentration of formaldehyde in residential indoor air. Atmos Environ 42:2424–2428CrossRefGoogle Scholar
  19. Glytsos T, Ondracek J, Dzumbova L, Kopanakis I, Lazaridis M (2010) Characterization of particulate matter concentrations during controlled indoor activities. Atmos Environ 44:1539–1549CrossRefGoogle Scholar
  20. Gomez Alvarez E, Wortham H, Strekowski R, Zetzsch C, Gligorovski S (2012) Atmospheric photo-sensitized heterogeneous and multiphase reactions: from outdoors to indoors. Environ Sci Technol 46:1955–1963CrossRefGoogle Scholar
  21. Guo Z, Jetter JJ, McBrian JA (2004) Rates of polycyclic aromatic hydrocarbon emissions from incense. Bull Environ Contam Toxicol 72:186–193CrossRefGoogle Scholar
  22. He C, Morawska L, Hitchins J, Gilbert D (2004) Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ 38:3405–3415CrossRefGoogle Scholar
  23. He C, Morawska L, Gilbert D (2005) Particle deposition rates in residential houses. Atmos Environ 39:3891–3899CrossRefGoogle Scholar
  24. He C, Morawska L, Taplin L (2007) Particle emission characteristics of office printers. Environ Sci Technol 41:6039–6045CrossRefGoogle Scholar
  25. Ho SSH, Yu JZ (2002) Concentrations of formaldehyde and other carbonyls in environments affected by incense burning. J Environ Monit 4:728–733CrossRefGoogle Scholar
  26. Holzinger R, Lee A, Paw UKT, Goldstein AH (2005) Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos Chem Phys 5:67–75CrossRefGoogle Scholar
  27. Hu MT, Chen SJ, Huang YC, Lee WJ, Chang-Chien GP, Tsai JH et al (2009) Characterization of, and health risks from, polychlorinated dibenzo-p-dioxins/dibenzofurans from incense burned in a temple. Sci Total Environ 407:4870–4875CrossRefGoogle Scholar
  28. Hussein T, Glytsos T, Ondracek J, Dohanyosova P, Zdimal V, Hameri K et al (2006) Particle size characterization and emission rates during indoor activities in a house. Atmos Environ 40:4285–4307CrossRefGoogle Scholar
  29. Ji X, Le Bihan O, Ramalho O, Mandin C, D’Anna B, Martinon L et al (2010) Characterization of particles emitted by incense burning in an experimental house. Indoor Air 20:147–158CrossRefGoogle Scholar
  30. Kjaer UD, Tirkkonene T (2006) Summary of adsorption/desorption experiments. SBI ReportGoogle Scholar
  31. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P et al (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252CrossRefGoogle Scholar
  32. Lee RS, Lin JM (1996) Gaseous aliphatic aldehydes in smoke from burning raw materials of Chinese joss sticks. Bull Environ Contam Toxicol 57:361–366CrossRefGoogle Scholar
  33. Lee SC, Wang B (2004) Characteristics of emissions of air pollutants from burning of incense in a large environment chamber. Atmos Environ 38:941–951CrossRefGoogle Scholar
  34. Lewis RG, Gordon SM (1996) Sampling for organic chemicals in air. In: Lawrence HK (ed) Principles of environmental sampling. Washington, USA, pp 401–470Google Scholar
  35. Li J, Feng YL, Xie CJ, Huang J, Yu JZ, Feng JL et al (2009) Determination of gaseous carbonyl compounds by their pentafluorophenyl hydrazones with gas chromatography/mass spectrometry. Anal Chim Acta 635:84–93CrossRefGoogle Scholar
  36. Lin JM, Wang LH (1994) Gaseous aliphatic aldehydes in Chinese incense smoke. Bull Environ Contam Toxicol 53:374–381Google Scholar
  37. Löfroth G, Stensman C, Brandhorst-Satzkorn M (1991) Indoor sources of mutagenic aerosol particulate matter: smoking, cooking and incense burning. Mutat Res 261:21–28CrossRefGoogle Scholar
  38. Lung SC, Hu S (2003) Generation rates and emission factors of particulate matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks. Chemosphere 50:673–679CrossRefGoogle Scholar
  39. Lung SCC, Kao MC, Hu S (2003) Contribution of incense burning to indoor PM10 and particle-bound polycyclic aromatic hydrocarbons under two ventilation conditions. Indoor Air 13:194–199CrossRefGoogle Scholar
  40. Mannino MR, Orecchio S (2008) Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: extraction, GC–MS analysis, distribution and sources. Atmos Environ 42:1801–1817CrossRefGoogle Scholar
  41. Maupetit F, Squinazi F (2009) Characterization of benzene and formaldehyde emissions from burning incense and scented candles indoors: development of exposure scenarios and recommendations for use. Environ Risque Santé 8:109–118Google Scholar
  42. Navasumrit P, Arayasiri M, Hiang OMT, Leechawengwongs M, Promvijit J, Choonvisase S et al (2008) Potential health effects of exposure to carcinogenic compounds in incense smoke in temple workers. Chem-Biol Interact 73:19–31CrossRefGoogle Scholar
  43. Nazaroff WW (2004) Indoor particle dynamics. Indoor Air 14:175–183CrossRefGoogle Scholar
  44. Nicolas M (2006) Ozone et qualité de l’air intérieur: interactions avec les produits de construction et de décoration. PhD thesis, University of Paris VIIGoogle Scholar
  45. OQAI - French Indoor Air Quality Observatory (2006) Etat de la qualité de l’air dans les logements françaisGoogle Scholar
  46. Orecchio S (2011) Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos Environ 45:1888–1895CrossRefGoogle Scholar
  47. Pagels J, Wierzbicka A, Nilsson E, Isaxon C, Dahl A, Gudmundsson A et al (2009) Chemical composition and mass emission factors of candle smoke particles. J Aerosol Sci 40:193–208CrossRefGoogle Scholar
  48. Ribéron J, O’Kelly P (2002) Maison automatisée de recherches innovantes sur l’air (MARIA): An experimental tool at the service of indoor air quality in housing sector. In: Proceedings of Indoor Air 2002, International Conference on Indoor Air Quality and Climate; 2002 June 30–July 5, Monterey, USA, pp 191–195Google Scholar
  49. Sarwar G, Corsi R, Kimura Y, Allen D, Weschler CJ (2002) Hydroxyl radicals in indoor environments. Atmos Environ 36:3973–3988CrossRefGoogle Scholar
  50. Schwarz K, Filipiak W, Amann A (2009) Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res 3:1–15Google Scholar
  51. See WS, Balasubramanian R, Joshi UM (2007) Physical characteristics of nano-particles emitted from incense smoke. Sci Technol Adv Mater 8:25–32CrossRefGoogle Scholar
  52. Steinbacher M, Dommen J, Ammann C, Spirig C, Neftel A, Prevot ASH (2004) Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements. Int J Mass Spectrom 239:117–128CrossRefGoogle Scholar
  53. Taipale R, Ruuskanen TM, Rinne J, Kajos MK, Hakola H, Kulmala M (2008) Technical note: quantitative long-term measurements of VOC concentrations by PTR-MS – measurement, calibration, and volume mixing ratio calculation methods. Atmos Chem Phys 8:6681–6698CrossRefGoogle Scholar
  54. Tani A, Hayward S, Hewitt CN (2003) Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int J Mass Spectrom 223–224:561–578Google Scholar
  55. Thatcher TL, Lai ACK, Moreno-Jackson R, Sextro RG, Nazaroff WW (2002) Effects of room furnishings and air speed on particle deposition rates indoors. Atmos Environ 36:1811–1819CrossRefGoogle Scholar
  56. Thatcher TL, Lunden MM, Revzan KL, Sextro RG, Brown NJ (2003) A concentration rebound method for measuring particle penetration and deposition in the indoor environment. Aerosol Sci Technol 37:847–864CrossRefGoogle Scholar
  57. Tichenor BA (2004) Adsorption and desorption of pollutants to and from indoor surfaces. The Handbook of Environmental Chemistry 4:73–87Google Scholar
  58. Tlili S, Nieto-Gligorovski LI, Temime-Roussel B, Gligorovski S, Wortham H (2010) Temperature and humidity dependence of the adsorption and desorption rates for acetone and xylene on silicon wafer. J Electrochem Soc 157:43–48CrossRefGoogle Scholar
  59. Tran TC, Marriott PJ (2007) Characterization of incense smoke by solid phase microextraction – comprehensive two-dimensional gas chromatography (GC × GC). Atmos Environ 41:5756–5768CrossRefGoogle Scholar
  60. Tran TC, Marriott PJ (2008) Comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry and simultaneous electron capture detection/nitrogen phosphorous detection for incense analysis. Atmos Environ 42:7360–7372CrossRefGoogle Scholar
  61. Uhde E, Salthammer T (2006) Influence of molecular parameters on the sink effect in test chambers. Indoor Air 16:158–165Google Scholar
  62. Vlasenko A, Macdonald AM, Sjostedt SJ, Abbatt JPD (2010) Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS): correction for humidity effects. Atmos Meas Tech 3:1055–1062CrossRefGoogle Scholar
  63. Wallace L (2006) Indoor sources of ultrafine and accumulation mode particles: size distributions, size-resolved concentrations, and source strengths. Aerosol Sci Technol 40:348–360CrossRefGoogle Scholar
  64. Wang H, Morrison GC (2006) Ozone-initiated secondary emission rates of aldehydes from indoor surfaces in four homes. Environ Sci Technol 40:5263–5268CrossRefGoogle Scholar
  65. Wang B, Lee SC, Ho KF, Kang YM (2007) Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong. Sci Total Environ 377:52–60CrossRefGoogle Scholar
  66. Warneke C, de Gouw JA, Kuster WC, Goldan PD, Fall R (2003) Validation of atmospheric VOC measurements by proton transfer reaction-mass spectrometry using a gas-chromatographic preseparation method. Environ Sci Technol 37:2494–2501CrossRefGoogle Scholar
  67. Weschler CJ (2011) Chemistry in indoor environments: 20 years of research. Indoor Air 21:205–218CrossRefGoogle Scholar
  68. WHO - World Health Organization (2005) Air quality guidelines – global update 2005. WHO Regional Publications, editor. European SeriesGoogle Scholar
  69. WHO - World Health Organization (2010) WHO guidelines for indoor air quality: selected pollutants. WHO Regional Publications, editor. European SeriesGoogle Scholar
  70. Yang TT, Lin TS, Chang M (2007a) Characteristics of emissions of Volatile Organic Compounds from smoldering incense. Bull Environ Contam Toxicol 78:308–313CrossRefGoogle Scholar
  71. Yang TT, Kuo YM, Hung HF, Shie RH, Chang P (2007b) Gas pollutant emissions from smoldering incense using FTIR. Aerosol Air Qual Res 7:417–431Google Scholar
  72. Yang C, Lin T, Chang F (2007c) Particle size distribution and PAH concentrations of incense smoke in a combustion chamber. Environ Pollut 145:606–615CrossRefGoogle Scholar
  73. Zai S, Zhen H, Jia-Song W (2006) Studies on the size distribution, number and mass emission factors of candle particles characterized by modes of burning. J Aerosol Sci 37:1484–1496CrossRefGoogle Scholar
  74. Zhang J, Chen Q (2002) Modeling VOC Sorption of building materials and its impact on indoor air quality. Report No.: ASHRAE RP-1097Google Scholar
  75. Zhao J, Zhang R (2004) Proton transfer reaction rate constants between hydronium ion (H3O+) and volatile organic compounds. Atmos Environ 38:2177–2185CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Manoukian
    • 1
  • E. Quivet
    • 1
  • B. Temime-Roussel
    • 1
  • M. Nicolas
    • 2
  • F. Maupetit
    • 2
  • H. Wortham
    • 1
  1. 1.Aix Marseille Université, CNRS, LCE, FRE 3416Marseille Cedex 03France
  2. 2.Centre Scientifique et Technique du Bâtiment (CSTB)Saint Martin d’HèresFrance

Personalised recommendations