Skip to main content
Log in

Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A cost-effective biosorbent was prepared by a green chemical modification process from muskmelon peel by saponification with alkaline solution of Ca(OH)2. Its adsorption behavior for lead ions was investigated and found to exhibit excellent adsorption properties. Results showed that the optimal equilibrium pH range for 100 % adsorption is from 4 up to 6.4. Adsorption equilibrium was attained within 10 min. The adsorption process can be described well by Langmuir model and pseudo-second-order kinetics equation, respectively. The maximum adsorption capacity for lead ions was found to be 0.81 mol/kg. Pectic acid contained in the muskmelon peel is the main factor responsible for the uptake of lead ions onto the gel, and the chemical modification process presented in this study can be assumed effective to prepare other similar biomaterials. The large adsorption capacity and the fast adsorption rate indicated that chemically saponified muskmelon peel gel in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdel-Ghani NT, Hefny M, El-Chaghaby GAF (2007) Removal of lead from aqueous solution using low-cost abundantly available adsorbents. Int J Environ Sci Technol 4(1):67–73

    CAS  Google Scholar 

  • Abdel-Ghani NT, Hegazy A, El-Chaghaby GAF (2009) Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: biosorption kinetics and equilibrium modeling. Int J Environ Sci Technol 6(2):243–248

    CAS  Google Scholar 

  • Ali I, Gupta VK (2006) Advances in water treatment by adsorption technology. Nat Protoc 1(6):2661–2667

    Article  CAS  Google Scholar 

  • Ali I (2010) The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep Purif Rev 39(3–4):95–171

    Article  CAS  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091

    Article  CAS  Google Scholar 

  • Ali I, Asim M, Khan TA (2012) Low cost adsorbents for removal of organic pollutants from wastewater. J Environ Manage 113:170–183

    Article  CAS  Google Scholar 

  • Amarasinghe BMWPK, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132(1–3):299–309

    Article  CAS  Google Scholar 

  • Argun ME, Dursun S, Ozdemir C, Karatas M (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141(1):77–85

    Article  CAS  Google Scholar 

  • Babi KG, Koumenides KM, Nikolaou AD, Makri CA, Tzoumerkas FK, Lekkas TD (2007) Pilot study of the removal of THMs, HAAs and DOC from drinking water by GAC adsorption. Desalination 210(1–3):215–224

    Article  CAS  Google Scholar 

  • Bentama J, Schmitz P, Destrac P, Espenan JM (2004) Technological innovation for the production of drinking water by membrane processes. Desalination 168(15):283–286

    Article  CAS  Google Scholar 

  • Bergmann H, Koparal S (2005) The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection. Electrochim Acta 50(25–26):5218–5228

    Article  CAS  Google Scholar 

  • Biswas BK, Inoue J, Kawakita H, Ohto K, Inoue K (2009) Effective removal and recovery of antimony using metal-loaded saponified orange waste. J Hazard Mater 172(2–3):721–728

    Article  CAS  Google Scholar 

  • Borgia I, Brunetti BG, Miliani C, Ricci C, Seccaroni C, Sgamellotti A (2007) The combined use of lead-tin yellow type I and II on a canvas painting by Pietro Perugino. J Cult Herit 8(1):65–68

    Article  Google Scholar 

  • Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39(10–11):135–138

    CAS  Google Scholar 

  • Cheng HF, HU YA (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut 158(5):1134–1146

    Article  CAS  Google Scholar 

  • Dabrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157(2–3):220–229

    Article  CAS  Google Scholar 

  • Dhakal RP, Ghimire KN, Inoue K (2005) Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy 79(3–4):182–190

    Article  CAS  Google Scholar 

  • Dubey A, Shiwani S (2012) Adsorption of lead using a new green material obtained from Portulaca plant. Int J Environ Sci Technol 9(1):15–20

    Article  CAS  Google Scholar 

  • Erenturk S, Malkoc E (2007) Removal of lead(II) by adsorption onto Viscum album L.: effect of temperature and equilibrium isotherm analyses. Applied Surface Sci 253(10):4727–4733

    Article  Google Scholar 

  • Feng Q, Lin Q, Gong F, Sugita S, Shoya M (2004) Adsorption of lead and mercury by rice husk ash. J Colloid Interface Sci 278(1):1–8

    Article  CAS  Google Scholar 

  • Genaidy AM, Sequeira R, Tolaymat T, Kohler J, Rinder M (2008) An exploratory study of lead recovery in lead-acid battery lifecycle in US market: an evidence-based approach. Sci Total Environ 407(1):7–22

    Article  CAS  Google Scholar 

  • Ghimire KN, Huang K, Inoue K, Ohto K, Kawakita H, Harada H, Morita M (2008a) Heavy metal removal from contaminated scallop waste for feed and fertilizer application. Bioresour Technol 99(7):2436–2441

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Ohto K, Hayashida T (2008b) Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica. Bioresour Technol 99(1):32–37

    Article  CAS  Google Scholar 

  • Goodyear KL, McNeill S (1999) Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci Total Environ 229(1–2):1–19

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S, Park KT (1999) Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist 19(2):129–136

    Article  Google Scholar 

  • Gupta VK, Srivastava SK, Tyagi R (2000) Design parameters for the treatment of phenolic waste by carbon columns (obtained from fertilizer waste material). Water Res 34(5):1543–1550

    Article  CAS  Google Scholar 

  • Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash—a low cost adsorbent. Ind Eng Chem Res 45(25):6619–6624

    Article  Google Scholar 

  • Gupta VK, Singh P, Rahman N (2004) Adsorption behavior of Hg(II), Pb(II), and Cd(II) from aqueous solution on Duolite C-433: a synthetic resin. J Colloid Interface Sci 275(2):398–402

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45(4):1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini V (2007a) Defluoridation of wastewaters using waste carbon slurry. Water Res 41(15):3307–3316

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007b) Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk — an agricultural waste. J Hazard Mater 142(1–2):443–448

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007c) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci 312(2):292–296

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007d) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309(2):464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42(3):766–770

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Equilibrium and kinetic modeling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153(1–2):759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163(1):396–402

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Malviya A, Mittal J (2009) Adsorption of carmoisine A from wastewater using waste materials — bottom ash and deoiled soya. J Colloid Interface Sci 335(1):24–33

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342(1):135–141

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011a) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185(1):17–23

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011b) Pesticides removal from wastewater by activated carbon prepared from waste rubber tire. Water Res 45(13):4047–4055

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011c) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45(6):2207–2212

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwa S (2012) Chemical treatment technologies for waste-water recycling — an overview. RSC Adv 2:6380–6388

    Article  CAS  Google Scholar 

  • Hameed BH, Ahmadv AA (2009) Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J Hazard Mater 164(2–3):870–875

    Article  CAS  Google Scholar 

  • Inoue K, Ghimire KN, Ohto K, Oshima T, Makino K, Morita M (2004) Adsorptive removal of cadmium from wastes of scallops by using orange or apple juice residue. Proc Int Symp Green Technol Resour Mater Recycl, Seoul, pp 140–147

    Google Scholar 

  • Inoue K, Paudyal H, Nakagawa H, Kawakita H, Ohto K (2010) Selective adsorption of chromium (VI) from zinc (II) and other metal ions using persimmon waste gel. Hydrometallurgy 104(2):123–128

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Bhatnagar A, Suhas IK (2003) A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep Sci Technol 38(2):463–481

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Jain S, Suhas IK (2004) Removal of chlorophenols using industrial wastes. Environ Sci Technol 38(4):1195–1200

    Article  CAS  Google Scholar 

  • Jan FA, Ishaq M, Khan S, Shakirullah M, Asim SM, Ahmad I, Mabood F (2011) Bioaccumulation of metals in human blood in industrially contaminated area. J Environ Sci 23(12):2069–2077

    CAS  Google Scholar 

  • Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. NeuroToxicol 30(5):761–765

    Article  CAS  Google Scholar 

  • Lee SH, Jung CH, Chuang H, Lee MY, Yang JW (1998) Removal of heavy metals from aqueous solution by apple residues. Process Biochem 33(2):205–211

    Article  CAS  Google Scholar 

  • Liang Q, Jiang YM, Zhang SG, Bi Y (1999) Components of seed—used watermelon fruit in Gansu of China. J Gansu Agric Univ 34(1):79–83

    Google Scholar 

  • Liang Q, Jiang YM, Bi Y (2002) Extraction of pectin and decolorization from seed—melon fruit peel. Sci Technol Food Ind 23(10):48–49

    CAS  Google Scholar 

  • Lu DD, Cao QL, Cao XJ, Luo F (2009) Removal of Pb(II) using the modified lawny grass: mechanism, kinetics, equilibrium and thermodynamic studies. J Hazard Mater 166(1):239–247

    Article  CAS  Google Scholar 

  • Luo TB, Chen Z, Hu AM, Li M (2012) Study on melt properties, microstructure, tensile properties of low Ag content Sn-Ag-Zn lead-free solders. Mater Sci Eng A 556(30):885–890

    CAS  Google Scholar 

  • Mittal A, Kurup L, Gupta VK (2005) Use of waste materials — bottom ash and de-oiled soya, as potential adsorbents for the removal of amaranth from aqueous solutions. J Hazard Mater 117(2–3):171–178

    Article  CAS  Google Scholar 

  • Mittal A, Gupta VK, Malviya A, Mittal J (2008) Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (bottom ash and de-oiled soya). J Hazard Mater 151(2–3):821–832

    Article  CAS  Google Scholar 

  • Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276(1–3):53–59

    Google Scholar 

  • Petrosyan V, Orlova A, Dunlap CE, Babayan E, Farfel M, Braun MV (2004) Lead in residential soil and dust in a mining and smelting district in northern Armenia: a pilot study. Environ Res 94(3):297–308

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012a) Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ Sci Pollut Res 19(4):1224–1228

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012b) Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 89(22):245–251

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012c) Characterization of the chemical bonding between Al2O3 and nanotube in MWCNT/Al2O3 nanocomposite. Curr Nano 8(5):739–743

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012d) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371(1):101–106

    Article  CAS  Google Scholar 

  • Saleh TA, Agarwal S, Gupta VK (2011) Synthesis of MWCNT/MnO2 composites and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B: Environ 106(1–2):46–53

    CAS  Google Scholar 

  • Sotiropoulou S, Perdikatsis V, Apostolaki C, Karydas AG, Devetzi A, Birtacha K (2010) Lead pigments and related tools at Akrotiri, Thera. Greece. provenance and application techniques. J Archaeol Sci 37(8):1830–1840

    Article  Google Scholar 

  • Sublet R, Simonnot MO, Boireau A, Sardin M (2003) Selection of an adsorbent for lead removal from drinking water by a point-of-use treatment device. Water Res 37(20):4904–4912

    Article  CAS  Google Scholar 

  • Wan MW, Kan CC, Rogel BD, Dalida MLP (2010) Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr Polym 80(3):891–899

    Article  CAS  Google Scholar 

  • Yu T, Zhang Y, Hu X, Meng W (2012) Distribution and bioaccumulation of heavymetals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol Environ Saf 81(1):55–64

    Google Scholar 

  • Zhan XM, Zhao X (2003) Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin. Water Res 37(16): 3905–3912

    Google Scholar 

  • Zhu CS, Wang LP, Chen WB (2009) Removal of Cu(II) from aqueous solution by agricultural by-product: peanut hull. J Hazard Mater 168(2–3):739–746

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by an initiation grant-in-aid for returned Chinese scholars founded by the Education Ministry of China, and the fundamental funds R&D of USTB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Huang.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Zhu, H. Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel. Environ Sci Pollut Res 20, 4424–4434 (2013). https://doi.org/10.1007/s11356-012-1361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1361-7

Keywords

Navigation