Skip to main content
Log in

Biostimulation of the autochthonous microbial community for the depletion of polychlorinated biphenyls (PCBs) in contaminated sediments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the effect of the biostimulation of the autochthonous microbial community on the depletion of polychlorinated biphenyls (PCBs) in historically contaminated sediments (6.260 ± 9.3 10−3 μg PCB/ g dry weight) has been observed. Biostimulation consisted of (1) the amendment of an electron donor to favor the dehalogenation of the high-chlorinated PCBs and (2) the vegetation of sediments with Sparganium sp. plants to promote the oxidation of the low-chlorinated PCBs by rhizodegradation. The effects of the treatments have been analyzed in terms of both PCB depletion and changes of the autochthonous bacterial community structure. The relative abundance of selected bacterial groups with reference to untreated sediments has been evaluated by quantitative real-time PCR. The amendment of acetate determined the enrichment of anaerobic dechlorinators like Dehalococcoides sp. Vegetation with Sparganium sp. plants determined the enrichment of either (3) the dechlorinators, Dehalococcoides and the Chloroflexi o-17/DF-1 strains or (4) the Acidobacteria, β-Proteobacteria, Actinobacteria, α-Proteobacteria, Bacteroidetes, and Firmicutes. The combination of the two biostimulation strategy determined the 91.5 % of abatement of the initial PCB content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253

    Article  CAS  Google Scholar 

  • Aguirre de Cárcer D, Martin M, Karlson U, Rivilla R (2007) Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation. Appl Environ Microbiol 73:6224–6232

    Article  Google Scholar 

  • Barns SM, Takala SL, Kusk CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737

    CAS  Google Scholar 

  • Bedard DL, Ritalahti KM, Loeffler FE (2007) Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 73:2513–2521

    Article  CAS  Google Scholar 

  • Blackwood CB, Oaks A, Buyers JS (2005) Phylum- and class-specific PCR primers for general microbial community analysis. Appl Environ Microbiol 71:6193–6198

    Article  CAS  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Calhoun A, King GM (1997) Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes. Appl Environ Microbiol 63:3051–3058

    CAS  Google Scholar 

  • Cámara B, Herrera C, Gonzalez M, Couve E, Hofer B, Seeger, M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol. 6:842–850

    Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30:799–804

    Article  CAS  Google Scholar 

  • Correa PA, Lin LS, Craig LJ, Dingfei H, Hornbuckle KC, Schnoor JL, VanAken B (2010) The effects of individual PCB congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes. Environ Int 36:901–906

    Article  CAS  Google Scholar 

  • Cutter LA, Watts JEM, Sowers KR, May HD (2001) Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol 3:699–709

    Article  CAS  Google Scholar 

  • Delaune RD, Reddy KR (2005) Redox Potential. In: Hillel D (ed) Encyclopedia of soils in the environment. Academic, London, pp 366–371

    Google Scholar 

  • Epuri V, Sorensen DL (1997) Phytoremediation of soil and water contaminants. Benzo(a)pyrene and hexachlorobiphenyl contaminated soil: phytoremediation potential. ACS Symposium Series

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  CAS  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosc Bioeng 105:433–449

    Article  CAS  Google Scholar 

  • Furukawa K, Suenaga H, Goto M (2004) Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol 186:5189–5196

    Article  CAS  Google Scholar 

  • Girvin DC, Scott AJ (1997) Polychlorinated biphenyl sorption by soils: measurement of soil–water partition coefficients at equilibrium. Chemosphere 35:2007–2025

    Article  CAS  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495

    Article  CAS  Google Scholar 

  • Lane D (1991) 16 s/23s rRNA sequencing. Goodfellow ESAM, nucleic acid techniques in bacterial systematics. John Wiley, West Sussex

    Google Scholar 

  • Li H, Liu L, Lin W, Wang S (2011) Plant uptake and in-soil degradation of PCB-5 under varying cropping conditions. Chemosphere 84:943–949

    Article  CAS  Google Scholar 

  • Lloyd JW, Paige JN (2008) Enhancing polychlorinated biphenyl dechlorination in fresh water sediment with biostimulation and bioaugmentation. Chemosphere 71:176–182

    Article  Google Scholar 

  • Mackova M, Prouzova P, Stursa P, Ryslava E, Uhlik O, Beranova K, Rezek J, Kurzawova V, Demnerova K, Macek T (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res 16:817–829

    Article  CAS  Google Scholar 

  • Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga–flavobacter–bacteroides in the natural environment. Microbiology 142:1097–1106

    Article  CAS  Google Scholar 

  • Meier H, Amann R, Ludwig W, Schleifer KH (1999) Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G+C content. Syst Appl Microbiol 22:186–196

    Article  CAS  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nogales B, Moore ERB, Abraham WR, Timmis KN (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl polluted moorland soil. Environ Microbiol 1:199–212

    Article  CAS  Google Scholar 

  • Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884

    Article  CAS  Google Scholar 

  • Overmann J, Coolen MJL, Tuschak C (1999) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172:83–94

    Article  CAS  Google Scholar 

  • Perelo LW (2010) In situ bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138

    Article  CAS  Google Scholar 

  • Quensen JF III, Boyd SA, Tiedje JM (1990) Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl Env Microbiol 8:2360–2369

    Google Scholar 

  • Slater H, Gouin T, Leigh MB (2011) Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84:199–206

    Article  CAS  Google Scholar 

  • Smith KE, Schwab AP, Banks MK (2007) Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment: a greenhouse feasibility study. J Environ Qual 36:239–244

    Article  CAS  Google Scholar 

  • Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841

    Article  CAS  Google Scholar 

  • Tillmann S, Strompl C, Timmis KN, Abraham WR (2005) Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol 52:207–217

    Article  CAS  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  Google Scholar 

  • Vasilyeva GK, Strijakova ER (2007) Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology 76:639–653

    Article  CAS  Google Scholar 

  • Watts JEM, Fagervold SK, May HD, Sowers KR (2005) A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology 151:2039–2046

    Article  CAS  Google Scholar 

  • Wu Q, Watts JEM, Sowers KR, May HD (2002) Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Appl Env Microbiol 68:807–812

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Di Gregorio.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Gregorio, S., Azaizeh, H. & Lorenzi, R. Biostimulation of the autochthonous microbial community for the depletion of polychlorinated biphenyls (PCBs) in contaminated sediments. Environ Sci Pollut Res 20, 3989–3999 (2013). https://doi.org/10.1007/s11356-012-1350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1350-x

Keywords

Navigation