Environmental Science and Pollution Research

, Volume 20, Issue 6, pp 3718–3734 | Cite as

Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast

  • Amira Rekik
  • Sami Maalej
  • Habib Ayadi
  • Lotfi Aleya
Research Article


'In connection with the Taparura Project, we studied the distribution of phytoplankton and zooplankton communities in relation to environmental variables at 18 stations sampled during four coastal cruises conducted between October 2009 and July 2010 on the north coast of Sfax (Tunisia, western Mediterranean Sea). The inshore location was largely dominated by diatoms (66 %) represented essentially by members of the genera Navicula, Grammatophora, and Licmophora. Dinophyceae were numerically the second largest group and showed an enhanced species richness. Cyanobacteriae developed in association with an important proliferation of colonial Trichodesmium erythraeum, contributing 39.4 % of total phytoplankton abundances. The results suggest that phytoplankters are generally adapted to specific environmental conditions. Copepods were the most abundant zooplankton group (82 %) of total zooplankton. A total of 21 copepod species were identified in all stations, with an overwhelming abundance of Oithona similis in autumn and summer, Euterpina acutifrons in winter, and Oncaea conifera in spring. The phosphogypsum restoration had been acutely necessary allowing dominant zooplankton species to exploit a wide range of food resources including phytoplankton and thus improving water quality.


Phytoplankton Zooplankton Environmental parameters Phosphogypsum North coast of Sfax 


  1. Abdennadher M, Hamza A, Fekih W, Hannachi I, Zouari-Belaaj A, Bradai N, Aleya L (2012) Factors determining the dynamics of toxic blooms of Alexandrium minutum during a 10-year study along the shallow southwestern Mediterranean coasts. Estuar Coast Shelf Sci 106:102–111CrossRefGoogle Scholar
  2. Aktan Y (2010) Large-scale patterns in summer surface water phytoplankton (except picophytoplankton) in the Eastern Mediterranean. Estuar Coast Shelf Sci 91:551–5588CrossRefGoogle Scholar
  3. Annabi-Trabelsi N, Daly-Yahia MN, Romdhane MS, Ben-Maïz N (2005) Seasonal variability of planktonic copepods in Tunis north lagoon (Tunisia, North Africa). Cahiers de Biol Mar 46:325–333Google Scholar
  4. Ben Brahim M, Hamza A, Hannachi I, Rebai A, Jarboui O, Bouain A, Aleya L (2010) Variability in the structure of epiphytic assemblages of Posidonia oceanica in relation to human interferences in the Gulf of Gabes, Tunisia. Mar Environ Res 70:411–421CrossRefGoogle Scholar
  5. Ben Ismail S, Sammari C, Gasparini GP, Béranger K, Brahim M, Aleya L (2012) Water masses exchanged through the Channel of Sicily: evidence for the presence of new water masses on the Tunisian side of the Channel. Deep Sea Res I 63:65–81CrossRefGoogle Scholar
  6. Bourrelly P (1985) Les Algues d’Eau Douce. Initiation à la Systèmatique. Tome II. Les Algues bleues et rouges. Les Euglénieins, Peridiniens et Cryptomonadines. Société Nouvelle des Editions Boubée, 450 ppGoogle Scholar
  7. Boxshall GA, Halsey SH (2003) An introduction to copepod diversity. Tome I. Printed and bound by Henry ling Ltd, the Dorset Press, Dorchester, 421 ppGoogle Scholar
  8. Bustillos-Guzman J, Claustre H, Marty JC (1995) Specific phytoplankton signatures and their relationship to hydrographic conditions in the coastal northwestern Mediterranean Sea. Mar Ecol Prog Ser 124:247–258CrossRefGoogle Scholar
  9. Calbet A, Garrido S, Saiz E, Alcaraz M, Duarte C (2001) Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. J Plankton Res 23:319–331CrossRefGoogle Scholar
  10. Chen YW, Qin BQ, Gao XY (2001) Prediction of blue-green algae bloom using stepwise multiple regression between algae and related environmental factors in Meiliang Bay, Lake Taihu. J Lake Sci 13:63–71Google Scholar
  11. Claustre H, Kerhervé P, Marty JC, Prieur L, Hecq JH (1994) Phytoplankton distribution associated with a geostrophic front: ecological and biogeochemical implications. J Mar Res 52:711–742CrossRefGoogle Scholar
  12. Costanzo G, Campolmi M, Zagami G (2000) Stephos marsalensis new species (Copepoda, Calanoida, Stephidae) from coastal waters of Sicily, Italy. J Plankton Res 22:2007–2014CrossRefGoogle Scholar
  13. Daly-Yahia MN, Souissi S, Daly-Yahia-Kefi O (2004) Spatial and temporal structure of planktonic copepods in the Bay of Tunis (southwestern Mediterranean Sea). Zool Stud 43:366–375Google Scholar
  14. Dhib A, Frossard V, Turki S, Aleya L (2012) Dynamics of harmful dinoflagellates driven by temperature and salinity in a northeastern Mediterranean lagoon. Environ Monit Assess. doi:10.1007/s10661-012-2797-4
  15. Dolédec S, Chessel D (1989) Rythmes saisonniers et composantes stationnelles en milieu aquatiqueII. Prise en compte et élimination d’effets dans un tableau faunistique. Acta Oecol Oecol Gen 10:207–332Google Scholar
  16. Drira Z, Hamza A, Bel Hassen M, Ayadi H, Bouain A, Aleya L (2008) Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea). Sci Mar 72:59–71CrossRefGoogle Scholar
  17. Drira Z, Hamza A, Bel Hassen M, Ayadi H, Bouaïn A, Aleya L (2010) Coupling of phytoplankton community structure to nutrients, ciliates and copepods in the Gulf of Gabes (south Ionian Sea, Tunisia). J Mar Biol Assoc UK 90:1203–1215CrossRefGoogle Scholar
  18. Frontier S (1973) Etude statistique de la dispersion du zooplancton. J Exp Mar Biol Ecol 12:229–262CrossRefGoogle Scholar
  19. Gage MA, Gorham E (1985) Alkaline phosphatase activity and cellular phosphorus as an index of the phosphorus status of phytoplankton in Minnesota Lake. Freshw Biol 15:227–233CrossRefGoogle Scholar
  20. Gomez F (2003) Checklist of Mediterranean free-living dinoflagellates. Bot Mar 46:215–242CrossRefGoogle Scholar
  21. Hamza-Chaffai A, Amiard-Triquet C, El Abed A (1997) Metallothionein-like protein, is it an efficient biomarker of metal contamination? A case study based on fish from the Tunisian coast. Arch Environ Contam Toxicol 33:53–62CrossRefGoogle Scholar
  22. Humphrey GF, Kerr JD (1969) Seasonal variations in the Indian Ocean along 110 E. III. Chlorophylls a and c. Aust J Mar Freshw Res 20:55–64CrossRefGoogle Scholar
  23. Ignatiades L, Gottis-Skeretas O, Pagou K, Krasakopoulou E (2009) Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal eastwest transect of the Mediterranean Sea. J Plankton Res 4:411–428CrossRefGoogle Scholar
  24. Kchaou N, Elloumi J, Drira Z, Hamza A, Ayadi H, Bouain A, Aleya L (2009) Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuar Coast Shelf Sci 83:414–424CrossRefGoogle Scholar
  25. Kustka AB, Sanudo-Wilhelmy SA, Carpenter EJ, Capone D, Burns J, Sunda WG (2003) Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS101): comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnol Oceanogr 48:1869–1884CrossRefGoogle Scholar
  26. Lam-Hoai T, Rougier C (2001) Zooplankton assemblages and biomass during a 4-period survey in a Northern Mediterranean coastal lagoon. Water Res 35:271–283CrossRefGoogle Scholar
  27. Lampitt RS, Gamble JC (1982) Diet and respiration of the small planktonic marine copepod Oithona nana. Mar Biol 66:185–190CrossRefGoogle Scholar
  28. Larsson U, Hajdu S, Walve J, Elmgren R (2001) Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen. Limnol Oceanogr 46:811–820CrossRefGoogle Scholar
  29. Louati A, Elleuch B, Kallel A, Saliot A, Dagaut J, Oudot J (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42:445–452CrossRefGoogle Scholar
  30. Martin JH (1970) Phytoplankton–zooplankton relationships in Narragansett Bay IV. The seasonal importance of grazing. Limnol Oceanogr 15:413–418CrossRefGoogle Scholar
  31. Marty JC, Chiaverini J, Pizay MD, Avril B (2002) Seasonal and inter-annual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999). Deep-Sea Res 49:1965–1985CrossRefGoogle Scholar
  32. Moncheva S, Gotsis-Skretas O, Pagou K, Krasteva A (2001) Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuarine Coastal Shelf Sci 53:281–295CrossRefGoogle Scholar
  33. Mur LR, Skulberg OM, Utkilen H (1999) Cyanobacteria in the environment. In: Chorus I, Bartram J (eds). Toxic cyanobacteria in water: a guide to their public health consequences. Routledge, New Fetter Lane, LondonGoogle Scholar
  34. Nausch M, Nausch G, Wasmund N, Nagel K (2008) Phosphorus pool variations and their relation to cyanobacteria development in the Baltic Sea: a three-year study. J Mar Syst 71:99–111CrossRefGoogle Scholar
  35. Parck JS (1979) Field bioassays on shellfish to assess environmental pollution levels of the Masan Bay. Journal of the Oceanological Society of Korea 14:15–25Google Scholar
  36. Polat S, Isik O (2002) Phytoplankton distribution, diversity and nutrients at the north-eastern Mediterranean coast of Turkey (Karatas¸ Adana). Turk J Bot 26:77–86Google Scholar
  37. Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C, Ghiglione J-F, Goyet C, Moutin T, Prieur L (2011) Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences 8:883–899CrossRefGoogle Scholar
  38. Rekik A, Denis, M, Aleya L, Maalej, S, Ayadi H (2012) Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration. Mar Poll Bull (in press)Google Scholar
  39. Rekik A, Drira Z, Guermazi W, Elloumi J, Maalej S, Aleya L, Ayadi H (2012) Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast. Mar Pollut Bull 64:336–346CrossRefGoogle Scholar
  40. Reynolds CS (1997) Vegetation processes in the Pelagic: a model for ecosystem theory. (Excellence in ecology 9). Ecology Institute, Oldendorf, 371 ppGoogle Scholar
  41. Richard S, Jamet J (2001) An unusual distribution of Oithona nana Giesbrecht (1892) (Crustacea: Cyclopoida) in a bay: the case of Toulon Bay (France, Mediterranean Sea). J Coast Res 17:957–963Google Scholar
  42. Roe KL, Barbeau K, Mann EL, Haygood MG (2012) Acquisition of iron by Trichodesmium and associated bacteria in culture. Environ Microbiol 14:1681–1695CrossRefGoogle Scholar
  43. Rose M (1933) Copépodes pélagiques. Faune de la France, 26. Paris: Lechevalier, 368 ppGoogle Scholar
  44. Rubin M, Berman-Frank I, Shaked Y (2011) Dust and mineral iron utilization by the marine diazotroph Trichodesmium. Nat Geosci 4:529–534CrossRefGoogle Scholar
  45. Rueter JG, Hutchins DA, Smith RW, Unsworth NL (1992) Iron nutrition of Trichodesmium. In: Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. Carpenter EJ, Capone DG, and Rueter JG (eds). Norwell, MA, USA: Kluwer Academic Publishers, pp. 289–306Google Scholar
  46. SCOR-UNESCO (1966) Determination of photosynthetic pigments in seawater. UNESCO, ParisGoogle Scholar
  47. Shannon CE, Weaver G (1949) The mathematical theory of communication. University of Illinois Press, Urbana, Chicago, IL, 118 ppGoogle Scholar
  48. Soler TE, Del Rio JG, Raduan MA, Blanco C (1985) The seasonal distribution of the copepods and cladocerans in the Cullera Bay. East Spain Int Rep 29:235–237Google Scholar
  49. Sommer U, Frank Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194CrossRefGoogle Scholar
  50. Tan X, Kong FX, Zeng QF (2009) Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors. J Environ Sci 21:892–899CrossRefGoogle Scholar
  51. Tayibi H, Choura M, Lopez FA, Alguacil FJ, Lopez-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90:2377–2386CrossRefGoogle Scholar
  52. Thingstad F, Zweifel UL, Rassoulzadegan F (1998) Limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnol Oceanogr 43:33–44CrossRefGoogle Scholar
  53. Thompson PA, Oh HM, Rhee GY (1994) Storage of phosphorus n nitrogen-fixing Anabaena flos-aquae (Cyanophyceae). J Phycol 30:267–273CrossRefGoogle Scholar
  54. Tranter DJ, Kerr JD (1969) Seasonal variations in the Indian Ocean along 110 E V. Zooplankton biomass. Aust J Mar Freshw Res 20:77–84CrossRefGoogle Scholar
  55. Tregouboff G, Rose M (1978) Manuel de Planctologie de la Méditerranée. CNRS, Tome II. Paris, p 207Google Scholar
  56. Utermöhl H (1958) Zurvervolkommungder quantitativen phytoplankton 1 Methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte. Limnol 9:1–38Google Scholar
  57. Wang XL, Lu YL, He GZ, Han JY, Wang TY (2007) Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake: a 5-year study. J Environ Sci 19:920–927CrossRefGoogle Scholar
  58. Weingartner T, Aagaard K, Woodgate R, Danielson S, Sasaki Y, Cavalieri D (2005) Circulation on the north central Chukchi Sea shelf. Deep-Sea Res II 52:3150–3174Google Scholar
  59. Ye Y, Christophe Völker C, Bracher A, Taylor B, Dieter A, Wolf-Gladrow DA (2012) Environmental controls on N2 fixation by Trichodesmium in the tropical eastern North Atlantic Ocean—a model-based study. Deep-Sea Res I. doi:10.1016/j.dsr.2012.01.004

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amira Rekik
    • 1
  • Sami Maalej
    • 1
  • Habib Ayadi
    • 1
  • Lotfi Aleya
    • 2
  1. 1.Département des Sciences de la Vie. Unité de recherche LR/UR/05ES05 Biodiversité et Ecosystèmes Aquatiques, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  2. 2.Laboratoire de Chrono-EnvironnementUniversité de Franche-ComtéBesançon CedexFrance

Personalised recommendations