Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 5, pp 3340–3350 | Cite as

Exposure of juvenile Danio rerio to aged TiO2 nanomaterial from sunscreen

  • Manuela Fouqueray
  • Patrice Noury
  • Lysiane Dherret
  • Perrine Chaurand
  • Khedidja Abbaci
  • Jerome Labille
  • Jerome Rose
  • Jeanne GarricEmail author
Research Article

Abstract

The toxicity of dietary exposure to artificially aged TiO2 nanomaterial (T-Lite™) used in sunscreen cream was studied on Danio rerio. Embryolarval assays were conducted to assess the effects of TiO2 residues of nanomaterial (RNM) on fish early life stages. Juvenile fishes were exposed by the trophic route in two experiments. During the first experiment, juvenile fishes were exposed to TiO2 RNM for 14 days by adding RNM to commercial fish food. The second one consisted in producing a trophic food chain. Pseudokirchneriella subcapitata algae, previously contaminated with TiO2 RNM in growth medium, was used to feed Daphnia magna neonates over a 48-h period. Daphnia were used next to feed juvenile fishes for 7 days. Accumulation of Ti, life traits (survival and growth) and biochemical parameters such as energy reserves, digestive (trypsin, esterase, cellulose and amylase) and antioxidant (superoxide dismutase and catalase) enzyme activity were measured at the end of exposures. As expected in the receiving aquatic system, TiO2 RNM at low concentrations caused a low impact on juvenile zebrafish. A slight impact on the early life stage of zebrafish with premature hatching was observed, and this effect appeared mainly indirect, due to possible embryo hypoxia. When juvenile fish are exposed to contaminated food, digestive enzyme activity indicated a negative effect of TiO2 RNM. Digestive physiology was altered after 14 days of exposure and seemed to be an indirect target of TiO2 RNM when provided by food.

Keywords

Titanium dioxide Nanoparticle Danio rerio Early life stage Food contamination Sublethal effect Nanomaterial alteration 

Notes

Acknowledgements

The authors thank Linda Northrup for correcting manuscript and the French National Agency ANR CES AGING NANO & TROPH (ANR-08-CESA-001) for funding.

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  2. Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14(4):257–297CrossRefGoogle Scholar
  3. Auffan ML, Pedeutour M, Rose JRM, Masion A, Ziarelli F, Borschneck D, Chaneac C, Cl B, Chaurand P, Labille JRM, Bottero J-Y (2010) Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol 44(7):2689–2694CrossRefGoogle Scholar
  4. Bernfeld P (1951) Enzymes of starch degradation and synthesis. In: Nord F (ed) Advances in Enzymology, vol 12. Interscience Publishers, New York, pp 379–428Google Scholar
  5. Bigorgne E, Foucaud L, Lapied E, Labille J, Botta C, Sirguey C, Falla J, Rose J, Joner EJ, Rodius F, Nahmani J (2011) Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. Environ Pollut 159(10):2698–2705CrossRefGoogle Scholar
  6. Brafield AE, Koodie AV (1994) The effect of high dietary zinc on trypsin activity in carp (Cyprinus carpio). J Fish Biol 45(1):169–172CrossRefGoogle Scholar
  7. Chen T-H, Lin C-Y, Tseng M-C (2011) Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull 63(5–12):303–308CrossRefGoogle Scholar
  8. Ciuhandu CS, Stevens ED, Wright PA (2005) The effect of oxygen on the growth of Oncorhynchus mykiss embryos with and without a chorion. J Fish Biol 67(6):1544–1551CrossRefGoogle Scholar
  9. Dedourge-Geffard O, Palais F, Biagianti-Risbourg S, Geffard O, Geffard A (2009) Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: an in situ experiment. Chemosphere 77:1569–1576CrossRefGoogle Scholar
  10. DiMichele L, Powers DA (1984) The relationship between oxygen consumption rate and hatching in Fundulus heteroclitus. Physiol Zool 57(1):46–51Google Scholar
  11. Exley C (2004) The pro-oxidant activity of aluminum. Free Radic Biol Med 36(3):380–387CrossRefGoogle Scholar
  12. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430CrossRefGoogle Scholar
  13. Fisichella M, Berenguer F, Steinmetz G, Auffan M, Rose J, Prat O (2012) Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells. Part Fibre Toxicol 9:18CrossRefGoogle Scholar
  14. Fouqueray M, Dufils B, Vollat B, Chaurand P, Botta C, Abacci K, Labille J, Rose J, Garric J (2012) Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. Environ Pollut 163:55–61CrossRefGoogle Scholar
  15. Fraysse B, Mons R, Garric J (2006) Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicol Environ Saf 63(2):253–267CrossRefGoogle Scholar
  16. Golovanova IL, Kuz’mina VV, Gobzhelian TE, Pavlov DF, Chuiko GM (1999) In vitro effects of cadmium and DDVP (dichlorvos) on intestinal carbohydrase and protease activities in freshwater teleosts. Comp Biochem Physiol C 122(1):21–25Google Scholar
  17. Gorham PR, McLachlan J, Hammer UT, Kim WK (1964) Isolation and culture of toxic strains of Anabaena flos aquae (Lingb.). Verh Int Verh Limnol 15:769–780Google Scholar
  18. Gupta PK, Sastry KV (1981) Effect of mercuric chloride on enzyme activities in the digestive system and chemical composition of liver and muscles of the catfish, Heteropneustes fossilis. Ecotoxicol Environ Saf 5(4):389–400CrossRefGoogle Scholar
  19. Gust M, Mouthon J, Queau H, Dussart C, Buronfosse T, Garric J (2011) Natural variability and response interpretation of fecundity, vertebrate-like sex-steroid levels and energy status in the New Zealand mudsnail Potamopyrgus antipodarum (Gray). Gen Comp Endocrinol 172(2):243–250CrossRefGoogle Scholar
  20. Handy RD (1993) The accumulation of dietary aluminium by rainbow trout, Oncorhynchus mykiss, at high exposure concentrations. J Fish Biol 42(4):603–606CrossRefGoogle Scholar
  21. Handy RD, Sims DW, Giles A, Campbell HA, Musonda MM (1999) Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper. Aquat Toxicol 47(1):23–41CrossRefGoogle Scholar
  22. Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci 21(10):1459–1466CrossRefGoogle Scholar
  23. Henderson RK, Parsons SA, Jefferson B (2008) Successful removal of algae through the control of zeta potential. Sep Sci Technol 43(7):1653–1666CrossRefGoogle Scholar
  24. Holbrook RD, Murphy KE, Morrow JB, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3(6):352–355CrossRefGoogle Scholar
  25. Holzapfel-Pschorn A, Obst U, Haberer K (1987) Sensitive methods for the determination of microbial activities in water samples using fluorigenic substrates. Fresenius Z Anal Chem 327(5–6):521–523CrossRefGoogle Scholar
  26. Isnard P, Flammarion P, Roman G, Babut M, Bastien P, Bintein S, Esserméant L, Férard JF, Gallotti-Schmitt S, Saouter E, Saroli M, Thiébaud H, Tomassone R, Vindimian E (2001) Statistical analysis of regulatory ecotoxicity tests. Chemosphere 45(4–5):659–669CrossRefGoogle Scholar
  27. ISO-8692 (2004) Water quality freshwater algal growth inhibition test with unicellular green algaeGoogle Scholar
  28. Johnston BD, Scown TM, Moger J, Cumberland SA, Baalousha M, Linge K, van Aerle R, Jarvis K, Lead JR, Tyler CR (2010) Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44(3):1144–1151CrossRefGoogle Scholar
  29. Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD (2010) Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci Total Environ 408(10):2268–2272Google Scholar
  30. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Develop Dyn 203(3):253–310CrossRefGoogle Scholar
  31. Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43(17):6757–6763CrossRefGoogle Scholar
  32. Klaper R, Crago J, Barr J, Arndt D, Setyowati K, Chen J (2009) Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: Changes in toxicity with functionalization. Environ Pollut 157(4):1152–1156Google Scholar
  33. Labille J, Feng J, Botta C, Borschneck D, Sammut M, Auffan M, Rose J, Bottero J-Y (2010) Aging of TiO2 nanocomposites used in sunscreen creams. Dispersion and fate of the byproducts in aqueous environment. Environ Pollut 12:3482–3489CrossRefGoogle Scholar
  34. Lapied E, Nahmani JY, Moudilou E, Chaurand P, Labille J, Rose J, Exbrayat JM, Oughton DH, Joner EJ (2011) Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Envir Int 37(6):1105–1110CrossRefGoogle Scholar
  35. Lewinski NA, Zhu H, Ouyang CR, Conner GP, Wagner DS, Colvin VL, Drezek RA (2011) Trophic transfer of amphiphilic polymer coated CdSe/ZnS quantum dots to Danio rerio. Nanoscale 3(8)Google Scholar
  36. Lied E, Julshamn K, Braekkan OR (1982) Determination of protein digestibility in Atlantic cod (Gadus morhua) with internal and external indicators. Canadian Journal of Fisheries and Aquat Sci 39(6):854–861Google Scholar
  37. Ling J, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2010) Effect of dietary iron levels on growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr 16(6):616–624CrossRefGoogle Scholar
  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  39. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefGoogle Scholar
  40. Noury P, Geffard O, Tutundjian R, Garric J (2006) Non destructive in vivo measurement of ethoxyresorufin biotransformation by zebrafish prolarva: development and application. Environ Toxicol 21(4):324–331CrossRefGoogle Scholar
  41. Oppen-Berntsen DO, Bogsnes A, Walther BT (1990) The effects of hypoxia, alkalinity and neurochemicals on hatching of Atlantic salmon (Salmo salar) eggs. Aquaculture 86(4):417–430CrossRefGoogle Scholar
  42. Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide-dismutase activity in tissue-extracts. Anal Biochem 154(2):536–541CrossRefGoogle Scholar
  43. Paterson G, Ataria JM, Ehsanul Hoque M, Burns DC, Metcalfe CD, Hoque ME (2011) The toxicity of titanium dioxide nanopowder to early life stages of the Japanese medaka (Oryzias latipes). Chemosphere 82(7):1002CrossRefGoogle Scholar
  44. Poston HA (1991) Effects of dietary aluminum on growth and composition of young Atlantic salmon. Progress Fish Cult 53(1):7–10CrossRefGoogle Scholar
  45. Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18(7):939–951CrossRefGoogle Scholar
  46. Ramsden CR, Henry TB, Handy RD (2012) Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat Toxicol (in press)Google Scholar
  47. Rawson DM, Zhang T, Kalicharan D, Jongebloed WL (2000) Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: a consideration of the structural and functional relationships with respect to cryoprotectant penetration. Aquac Res 31(3):325–336CrossRefGoogle Scholar
  48. Samain JF, Daniel JY, Coz JRL (1977) Trypsine, amylase et proteines du zooplancton: dosage automatique et manuel. J Exp Mar Biol Ecol 29(3):279–289CrossRefGoogle Scholar
  49. Sastry KV, Gupta PK (1979) The effect of cadmium on the digestive system of the teleost fish, Heteropneustes fossilis. Environ Res 19(2):221–230CrossRefGoogle Scholar
  50. Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Envir Int 37(6):1083–1097CrossRefGoogle Scholar
  51. Vandenberg GW, De La Noüe J (2001) Apparent digestibility comparison in rainbow trout (Oncorhynchus mykiss) assessed using three methods of faeces collection and three digestibility markers. Aquac Nutr 7(4):237–245Google Scholar
  52. Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen Y (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83(4):461–467CrossRefGoogle Scholar
  53. Yeo MK, Kang M (2009) Effects of Cux TiOy nanometer particles on biological toxicity during zebrafish embryogenesis. Korean J Chem Eng 26(3):711–718CrossRefGoogle Scholar
  54. Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A 43(3):278–284CrossRefGoogle Scholar
  55. Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010) Trophic transfer of TiO2 nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79(9):928–933CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manuela Fouqueray
    • 1
  • Patrice Noury
    • 1
  • Lysiane Dherret
    • 1
  • Perrine Chaurand
    • 2
    • 4
  • Khedidja Abbaci
    • 1
  • Jerome Labille
    • 3
    • 4
  • Jerome Rose
    • 3
    • 4
  • Jeanne Garric
    • 1
    Email author
  1. 1.IRSTEA Lyon, UR MALYVilleurbanne CedexFrance
  2. 2.Aix-Marseille University, CEREGEAix en Provence cedex 4France
  3. 3.CNRS, CEREGEAix en Provence cedex 4France
  4. 4.International Consortium for the Environmental Implication of Nanotechnology iCEINTParisFrance

Personalised recommendations