Skip to main content
Log in

Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m−1), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m−1. X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6 %), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94 %, As(V) >96 % and Cr(VI) between 11 and 30 % for shell ash; Hg(II) >98 %, As(V) >88 % and Cr(VI) between 30 and 88 % for the waste mixture. Hg and As desorption was <5 % for both shell ash and the waste mixture, while Cr desorption was between 92 and 45 % for shell ash, and between 19 and 0 % for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeynaike A, Wang L, Jones MI, Patterson DA (2011) Pyrolysed powdered mussel shells for eutrophication control: effect of particle size and powder concentration on the mechanism and extent of phosphate removal. Asia Pac J Chem Eng 6(2):231–243

    Article  CAS  Google Scholar 

  • Aksu Z, Akpinar D (2001) Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge. Biochem Eng J 7:183–193

    Article  CAS  Google Scholar 

  • Alexandratos VG, Elzinga EJ, Reeder RJ (2007) Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim Cosmochim Acta 71:4172–4187

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1(6):2661–2667

    Article  Google Scholar 

  • Álvarez E, Fernández-Sanjurjo MJ, Núñez-Delgado A, Seco N, Corti G (2012a) Aluminium fractionation and speciation in bulk and rhizosphere of a grass soil amended with mussel shells or lime. Geoderma 173–174:322–329

    Article  Google Scholar 

  • Álvarez E, Fernández-Sanjurjo MJ, Seco N, Núñez-Delgado A (2012b) Use of mussel shells as a soil amendment: effects on bulk and rhizosphere soil, and pasture production. Pedosphere 22:152–164

    Article  Google Scholar 

  • Arnesen AKM, Krogstad T (1998) Sorption and desorption of fluoride in soil polluted from the aluminium smelter at Ardal in Western Norway. Water Air Soil Pollut 103:357–373

    Article  CAS  Google Scholar 

  • Barros MC, Magán A, Valiño S, Bello PM, Casares JJ, Blanco JM (2009) Identification of best available techniques in the seafood industry: a case study. J Clean Prod 17:391–399

    Article  CAS  Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED (2003) Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ Sci Technol 37(19):4449–4456

    Article  CAS  Google Scholar 

  • Cetinkaya G, Aksu Z, Ozturk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  Google Scholar 

  • Cubillas P, Köhler S, Prieto M, Causserand C, Oelkers EH (2005) How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution–CdCO3 precipitation. Geochim Cosmochim Acta 69(23):5459–5476

    Article  CAS  Google Scholar 

  • Currie JA, Harrison NR, Wang L, Jones MI, Brooks MS (2007) A preliminary study of processing seafood shells for eutrophication control. Asia Pac J Chem Eng 2:460–467

    Article  CAS  Google Scholar 

  • Dizadji N, Abootalebi Anaraki N (2011) Adsorption of chromium and copper in aqueous solutions using tea residue. Int J Environ Sci Tech 8(3):631–638

    CAS  Google Scholar 

  • Drexel RT, Haitzer M, Ryan JN, Aiken GR, Nagy KL (2002) Mercury(II) sorption to two Florida everglades peats: evidence for strong and weak binding and competition by dissolved organic matter released from the peat. Environ Sci Technol 36:4058–4064

    Article  CAS  Google Scholar 

  • Fernández-González R, Martínez-Carballo E, González-Barreiro C, Rial-Otero R, Simal-Gándara J (2011) Distribution of polychlorinated biphenyls in both products and by-products of a mussel shell incinerator facility. Environ Sci Pollut Res 18(7):1139–1146

    Article  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008a) Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloid Surf B 64(2):170–178

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008b) Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154(1–3):347–354

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008c) Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153(1–2):759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  Google Scholar 

  • Gupta VK, Sharma S (2002) Removal of cadmium and zinc from aqueous solutions using red mud. Environ Sci Technol 36(16):3612–3617

    Article  CAS  Google Scholar 

  • Gupta VK, Srivastava SK, Mohan D, Sharma S (1997) Design Parameters for fixed bed reactors of activated carbon developed from fertilizer waste material for the removal of some heavy metal ions. Waste Manage 17:517–522

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45(4):1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007a) Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142(1–2):443–448

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007b) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309(2):464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342(1):135–141

    Article  CAS  Google Scholar 

  • Iribarren D, Moreira MT, Feijoo G (2010) Implementing by-product management into the life cycle assessment of the mussel sector. Resour Conserv Recycl 54:1219–1230

    Article  Google Scholar 

  • Köhler S, Cubillas P, Rodríguez-Blanco JD, Bauer C, Prieto M (2007) Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environ Sci Technol 41:112–118

    Article  Google Scholar 

  • Lin YT, Huang CP (2008) Reduction of chromium(VI) by pyrite in dilute aqueous solutions. Sep Purif Technol 63(1):191–199

    Article  CAS  Google Scholar 

  • Mahuli SK, Agnihotri R, Chauk S, Ghosh-Dastida A, Wei SH, Fan LS (1997) Pore-structure optimization of calcium carbonate for enhanced sulfation. AICHE J 43(9):2323–2335

    Article  CAS  Google Scholar 

  • Maji SK, Pal A, Pal T, Adak A (2007) Adsorption thermodynamics of arsenic on laterite soil. J Surf Sci Technol 22:161–176

    Google Scholar 

  • Mohan D, Gupta VK, Srivastava SK, Chander S (2001) Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids Surf A 177:169–181

    Article  CAS  Google Scholar 

  • Peña-Rodríguez S, Fernández-Calviño D, Nóvoa-Muñoz JC, Arias-Estévez M, Núñez-Delgado A, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E (2010) Kinetics of Hg(II) adsorption and desorption in calcined mussel shells. J Hazard Mater 180:622–627

    Article  Google Scholar 

  • Pérez-Gregorio MR, García-Falcón MS, Martínez-Carballo E, Simal-Gándara J (2010) Removal of polycyclic aromatic hydrocarbons from organic solvents by ashes wastes. J Hazard Mater 178:273–281

    Article  Google Scholar 

  • Pousada-Ferradás Y, Seoane-Labandeira S, Blanco M, Núñez-Delgado A (2011) The effect of aging on element plant availability and bacterial counts of mixtures of wood ash and sewage sludge. Maderas-Cienc Tecnol 13(3):307–318

    Article  Google Scholar 

  • Pousada-Ferradás Y, Seoane-Labandeira S, Mora-Gutiérrez A, Núñez-Delgado A (2012) Risk of water pollution due to ash–sludge mixtures: column trials. Int J Environ Sci Tech 9(1):21–29

    Article  Google Scholar 

  • Prieto M, Cubillas P, Fernández-González A (2003) Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochim Cosmochim Acta 67(20):3859–3869

    Article  CAS  Google Scholar 

  • Sakulkhaemaruethai S, Duangduen C, Pivsa-Art W, Pivsa-Art S (2010) Fabrication of composite material from sea mussel shells and white clay as a versatile sorbent. Energy Res J 1(2):78–81

    Article  Google Scholar 

  • Tan KH (1996) Soil sampling, preparation and analysis. Marcel Decker, New York

    Google Scholar 

  • Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF (2002) Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour Technol 85(2):155–158

    Article  CAS  Google Scholar 

  • Vinodhini V, Nilanjana D (2009) Biowaste materials as sorbents to remove chromium(VI) from aqueous environment a comparative study. J Agric Biol Sci 4:19–23

    Google Scholar 

  • Wang XS, Li ZZ, Tao SR (2009) Removal of chromium(VI) from aqueous solution using walnut hull. J Environ Manage 90:721–729

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Government of Galicia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avelino Núñez-Delgado.

Additional information

Responsible editor: Vera Slaveykova

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 1

pH value for shell ash and the waste mixture as a function of adsorbed arsenic (a), chromium (b) and mercury (c). Bars indicate standard deviation, with coefficients of variation always ≤ 5% (XLSX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seco-Reigosa, N., Peña-Rodríguez, S., Nóvoa-Muñoz, J.C. et al. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture. Environ Sci Pollut Res 20, 2670–2678 (2013). https://doi.org/10.1007/s11356-012-1192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1192-6

Keywords

Navigation