Skip to main content

Advertisement

Log in

Brassica napus hairy roots and rhizobacteria for phenolic compounds removal

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation. In this work, the ability of two rhizobacteria, Burkholderia kururiensis KP 23 and Agrobacterium rhizogenes LBA 9402, to tolerate and degrade phenolic compounds was evaluated. Both microorganisms were capable of tolerating high concentrations of phenol, 2,4-dichlorophenol (2,4-DCP), guaiacol, or pentachlorophenol (PCP), and degrading different concentrations of phenol and 2,4-DCP. Association of these bacterial strains with B. napus hairy roots, as model plant system, showed that the presence of both rhizospheric microorganisms, along with B. napus hairy roots, enhanced phenol degradation compared to B. napus hairy roots alone. These findings are interesting for future applications of these strains in phenol rhizoremediation processes, with whole plants, providing an efficient, economic, and sustainable remediation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

HR:

Hairy roots

MM:

Mineral medium

MS:

Murashige–Skoog

MTC:

Maximum tolerated concentration

2,4-DCP:

2,4-Dichlorophenol

References

  • Able AJ, Sutherland MW, Guest DI (2003) Production of reactive oxygen species during non-specific elicitation, non-host resistance and field resistance expression in cultured tobacco cells. Funct Plant Biol 30:91–99

    Article  CAS  Google Scholar 

  • Agostini E, Milrad de Forchetti SR, Tigier H (1997) Production of peroxidases by hairy roots of Brassica napus. Plant Cell Tissue Organ Cult 47:177–182

    Article  Google Scholar 

  • Annachhatre AP, Gheewala SH (1996) Biodegradation of chlorinated phenolic compounds. Biotech Adv 14:35–56

    Article  CAS  Google Scholar 

  • Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V (2006) Kinetics of high strength phenol degradation using Bacillus brevis. J Hazard Mater B 129:216–222

    Article  CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhyzobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  Google Scholar 

  • Caballero-Mellado J, Onofre Lemus J, Estrada de los Santos P (2007) The tomato rhizosphere an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  • Coniglio MS, Busto VD, González PS, Medina MI, Milrad S, Agostini E (2008) Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions. Chemosphere 72:1035–1042

    Article  CAS  Google Scholar 

  • Gallego A, Gemini VL, Fortunato MS, Rossi S, Neira J, Korol SE (2005) Degradación de 2,4-diclorofenol por una cepa autóctona de Comamonas acidovorans. In: Herkovits J. (Eds.). Salud Ambiental y Humana, una visión holística. SETAC 1: 144–146

  • Gerhardt KE, Dong Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Ghanem KM, Al-Garni SM, Al-Shehri AN (2009) Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel Aspergillus flavus isolate. African J of Biotech 8:3576–3583

    CAS  Google Scholar 

  • González PS, Capozucca CE, Tigier HA, Milrad SR, Agostini E (2006) Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enz Microb Technol 39:647–653

    Article  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  CAS  Google Scholar 

  • Hearn EM, Dennis JJ, Gray MR, Foght JM (2003) Identification and characterization of the emh ABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 185:6233–6240

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Klapwjik PM, Nuti MP, Schilperoort RA, Rorsch A (1977) Transfer of the A. tumefaciens ti plasmid to avirulent Agrobacteria and Rhizobium ex planta. J Gen Microbiol 98:477–484

    Google Scholar 

  • Kowalska M, Bodzek M, Bohdziewicz J (1998) Biodegradation of phenols and cyanides using membranes with immobilized microorganisms. Process Biochem 33:189–197

    Article  CAS  Google Scholar 

  • Kurzbaum E, Kirzhner F, Sela S, Zimmels Y, Armon R (2010) Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm. Water Res 17:5021–5031

    Article  Google Scholar 

  • Leitao AL, Duarte MP, Santos Oliveira J (2007) Degradation of phenol by a halotolerant strain of Penicillium chrysogenum. Int Biodet Biodeg 59:220–225

    Article  CAS  Google Scholar 

  • Macek TE (1989) Solanum aviculare Forst, Solanum laciniatum Ait [poroporo]: In vitro culture and the production of solasodine. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Vol 7. Springer Verlag, Berlin, pp 443–467

    Google Scholar 

  • Macek T, Macková M, Burkhard J, Demnerová K (1998) Introduction of green plants for the control of metals and organics in environmental remediation. In: Holm FW (ed) Effluents from alternative demilitarisation technologies. Kluwer Academic Publishers, Dordrecht, pp 71–84

    Chapter  Google Scholar 

  • Murashige T, Skoog TF (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–479

    Article  CAS  Google Scholar 

  • Muter O, Versilovskis A, Scherbaka R, Grube M, Zarina D (2008) Effect of plant extract on the degradation of nitroaromatic compounds by soil microorganisms. J Ind Microbiol and Biotech 35:1539–1543

    Article  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  Google Scholar 

  • Perin L, Martinez Aguilar L, Castro-González R, Estrada de los Santos P, Cabellos-Avelar T, Guedes HV, Reis VM, Caballero-Mellado J (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110

    Article  CAS  Google Scholar 

  • Petroutsos D, Katapodis P, Samiotaki M, Panayotou G, Ketos D (2008) Detoxification of 2,4-dichlorophenol by de marine microalga Tetraselmis marina. Phytochemistry 69:707–714

    Article  CAS  Google Scholar 

  • Santos de Araujo BS, Dec J, Bollag JM, Pletsch M (2006) Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere 63:642–651

    Article  CAS  Google Scholar 

  • Schröder M, Müller C, Posten C, Deckwer WD, Hecht V (1997) Inhibition kinetics of phenol degradation from unstable steady-state data. Biotech Bioeng 54:567–576

    Article  Google Scholar 

  • Sharma A, Kachroo D, Kumar R (2002) Time dependent influx and efflux of phenol by immobilized microbial consortium. Environ Monit Assess 76:195–211

    Article  CAS  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. App Environ Microbiol 71:5646–5649

    Article  CAS  Google Scholar 

  • Solomon BO, Posten C, Harder MPF, Hecht V, Deckwer WD (1994) Energetics of Pseudomonas cepacia G4 growth in a chemostat with phenol limitation. J Chem Tech Biotech 60:275–282

    Article  CAS  Google Scholar 

  • Talano MA, Frontera S, González PS, Medina MI, Agostini E (2010) Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mater 176:784–791

    Article  CAS  Google Scholar 

  • Van Schie PM, Young LY (2000) Biodegradation of phenol: mechanisms and applications. Bioremediat J 4:1–18

    Article  Google Scholar 

  • Wagner M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 36:4041–4052

    Article  CAS  Google Scholar 

  • Wang CC, Lee CM, Kuan CH (2000) Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus. Chemosphere 41:447–452

    Article  CAS  Google Scholar 

  • Whiteley AS, Bailey MJ (2000) Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ Microbiol 66:2400–2407

    Article  CAS  Google Scholar 

  • Wu JY, Ng J, Shi M, Wu SJ (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root-bacteria coculture process. Appl Microbiol Biotechnol 77:543–550

    Article  CAS  Google Scholar 

  • Yang L, Wang Y, Song J, Zhao W, He X, Chen J, Xiao M (2011) Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol Biochem 43:915–922

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.S.G, M.A.T, and E.A. are members of the research career from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina). C.E.P, O.M.O, and A.L.A have a fellowship from CONICET-Ministerio de Ciencia y Tecnología de Córdoba. We wish to thank PPI (SECyT-UNRC), CONICET, and Ministerio de Ciencia y Tecnología de Córdoba for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola S. González.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, P.S., Ontañon, O.M., Armendariz, A.L. et al. Brassica napus hairy roots and rhizobacteria for phenolic compounds removal. Environ Sci Pollut Res 20, 1310–1317 (2013). https://doi.org/10.1007/s11356-012-1173-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1173-9

Keywords