Environmental Science and Pollution Research

, Volume 20, Issue 4, pp 2535–2545 | Cite as

Distribution of polycyclic aromatic hydrocarbons in surface water and sediment near a drinking water reservoir in Northeastern China

  • Yu Liu
  • Jimin ShenEmail author
  • Zhonglin Chen
  • Nanqi Ren
  • Yifan Li
Research Article


The levels of polycyclic aromatic hydrocarbons (PAHs) in the water and the sediment samples collected near the Mopanshan Reservoir—the most important drinking water resource of Harbin City in Northeast China—were examined. A total of 16 PAHs were concurrently identified and quantified in the three water bodies tested (Lalin River, Mangniu River, and Mopanshan Reservoir) and in the Mopanshan drinking water treatment plant during the high- and low water periods. The total PAH concentrations in the water and sediment samples ranged from 122.7 to 639.8 ng/L and from 89.1 to 749.0 ng/g dry weight, respectively. Similar spatial and temporal trends were also found for both samples. The lowest Σ16PAH concentration of the Mopanshan Reservoir was obtained during the high water period; by contrast, the Lalin River had the highest concentration during the low water period. The PAH profiles resembling the three water bodies, with high percentages of low-molecular weight PAHs and dominated by two- to three-ring PAHs (78.4 to 89.0 %). Two of the molecular indices used reflected the possible PAH sources, indicating the main input from coal combustion, especially during the low water period. The conventional drinking water treatment operations resulted in a 20.7 to 67.0 % decrease in the different-ringed PAHs in the Mopanshan-treated drinking water. These findings indicate that human activities negatively affect the drinking water resource. Without the obvious removal of the PAHs in the waterworks, drinking water poses certain potential health risks to people.


PAHs Surface water Sediment Drinking water treatment plant 



This work was supported by the Funds for Creative Research Groups of China (grant no. 51121062), the Heilongjiang Postdoctoral Financial Assistance (LBH-Z07152), and the Open Project of the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (no. QA201019).


  1. Badawy MI, Emababy MA (2010) Distribution of polycyclic aromatic hydrocarbons in drinking water in Egypt. Desalination 251(1–3):34–40. doi: 10.1016/j.desal.2009.09.148 CrossRefGoogle Scholar
  2. Baker JE, Eisenreich SJ (1990) Concentrations and fluxes of polycyclic aromatic hydrocarbons and polychlorinated-biphenyls across the air–water interface of Lake Superior. Environ Sci Technol 24(3):342–352CrossRefGoogle Scholar
  3. Chen BL, Xuan XD, Zhu LZ, Wang J, Gao YZ, Yang K, Shen XY, Lou BF (2004) Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38(16):3558–3568. doi: 10.1016/j.watres.2004.05.013 CrossRefGoogle Scholar
  4. Chen YY, Zhu LZ, Zhou RB (2007) Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China. J Hazard Mater 141(1):148–155. doi: 10.1016/j.jhazmat.2006.06.106 CrossRefGoogle Scholar
  5. Dickhut RM, Gustafson KE (1995) Atmospheric washout of polycyclic aromatic hydrocarbons in the Southern Chesapeake Bay Region. Environ Sci Technol 29(11):2904CrossRefGoogle Scholar
  6. Doong RA, Lin YT (2004) Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Res 38(7):1733–1744. doi: 10.1016/j.watres.2003.12.042 CrossRefGoogle Scholar
  7. Feng CL, Xia XH, Shen ZY, Zhou Z (2007) Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environ Monit Assess 133(1–3):447–458. doi: 10.1007/s10661-006-9599-5 CrossRefGoogle Scholar
  8. Gigliotti CL, Brunciak PA, Dachs J, Glenn TR, Nelson ED, Totten LA, Eisenreich SJ (2002) Air-water exchange of polycyclic aromatic hydrocarbons in the New York–New Jersey, USA, Harbor Estuary. Environ Toxicol Chem 21(2):235–244Google Scholar
  9. Gotz RBOH, Friesel P, Roch K (1998) Organic trace compounds in the water of the River Elbenear Hamburg part II. Chemosphere 36:2013–2118Google Scholar
  10. Guo W, He M, Yang Z, Lin C, Quan X, Men B (2009) Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dry season, China. J Hazard Mater 164(2–3):1379–1385. doi: 10.1016/j.jhazmat.2008.09.083 CrossRefGoogle Scholar
  11. Guo W, He M, Yang Z, Lin C, Quan X (2011) Aliphatic and polycyclic aromatic hydrocarbons in the Xihe River, an urban river in China’s Shenyang City: distribution and risk assessment. J Hazard Mater 186(2–3):1193–1199. doi: 10.1016/j.jhazmat.2010.11.122 CrossRefGoogle Scholar
  12. Job CA (1996) Benefits and costs of wellhead protection. Ground Water Monit Remed 16(2):65–68CrossRefGoogle Scholar
  13. Kannan K, Johnson-Restrepo B, Yohn SS, Giesy JP, Long DT (2005) Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan inland lakes. Environ Sci Technol 39(13):4700–4706. doi: 10.1021/Es050064f CrossRefGoogle Scholar
  14. Keith LH, Telliard WA (1979) Priority pollutants: I. a perspective view. Environ Sci Technol 13(4):416–423CrossRefGoogle Scholar
  15. Ko FC, Baker J, Fang MD, Lee CL (2007) Composition and distribution of polycyclic aromatic hydrocarbons in the surface sediments from the Susquehanna River. Chemosphere 66(2):277–285. doi: 10.1016/j.chemosphere.2006.05.033 CrossRefGoogle Scholar
  16. Li GC, Xia XH, Yang ZF, Wang R, Voulvoulis N (2006) Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environ Pollut 144(3):985–993. doi: 10.1016/j.envpol.2006.01.047 CrossRefGoogle Scholar
  17. Li J, Shang X, Zhao Z, Tanguay RL, Dong Q, Huang C (2010) Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. J Hazard Mater 173(1–3):75–81. doi: 10.1016/j.jhazmat.2009.08.050 CrossRefGoogle Scholar
  18. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97CrossRefGoogle Scholar
  19. Ma Y-g, J-p C, Jiao F, K-x D, Rong Z, Li M, W-h W (2007) Distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) in drinking water resources from Henan Province in middle of China. Environ Monit Assess 146(1–3):127–138. doi: 10.1007/s10661-007-0065-9 Google Scholar
  20. Ma WL, Li YF, Qi H, Sun DZ, Cheng X (2008) ORGN 473-Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in topsoils of Harbin, China. Abstr Pap Am Chem S 235:1053Google Scholar
  21. Ma WL, Li YF, Sun DZ, Qi H (2009) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in topsoils of Harbin, China. Arch Environ Contam Toxicol 57(4):670–678. doi: 10.1007/s00244-009-9314-y CrossRefGoogle Scholar
  22. Ma W-L, Li Y-F, Qi H, Sun D-Z, Liu L-Y, Wang D-G (2010) Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere 79(4):441–447. doi: 10.1016/j.chemosphere.2010.01.048 CrossRefGoogle Scholar
  23. Malik A, Verma P, Singh AK, Singh KP (2011) Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India. Environ Monit Assess 172(1–4):529–545. doi: 10.1007/s10661-010-1352-4 CrossRefGoogle Scholar
  24. Mcveety BD, Hites RA (1988) Atmospheric deposition of polycyclic aromatic-hydrocarbons to water surfaces—a mass balance approach. Atmos Environ 22(3):511–536CrossRefGoogle Scholar
  25. Norramit P, Cheevaporn V, Itoh N, Tanaka K (2005) Characterization and carcinogenic risk assessment of polycyclic aromatic hydrocarbons in the respirable fraction of airborne particles in the Bangkok Metropolitan area. J Health Sci 51(4):437–446CrossRefGoogle Scholar
  26. Nylund L, Heikkila P, Hameila M, Pyy L, Linnainmaa K, Sorsa M (1992) Genotoxic effects and chemical compositions of four creosotes. Mutat Res 265(2):223–236CrossRefGoogle Scholar
  27. Qiao M, Wang C, Huang S, Wang D, Wang Z (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32(1):28–33. doi: 10.1016/j.envint.2005.04.005 CrossRefGoogle Scholar
  28. Rugen PJ, Stern CD, Lamm SH (1989) Comparative carcinogenicity of the pahs as a basis for acceptable exposure levels (Aels) in drinking-water. Regul Toxicol Pharm 9(3):273–283CrossRefGoogle Scholar
  29. Shaw M, Tibbetts IR, Muller JF (2004) Monitoring PAHs in the Brisbane River and Moreton Bay, Australia, using semipermeable membrane devices and EROD activity in yellowfin bream, Acanthopagrus australis. Chemosphere 56(3):237–246. doi: 10.1016/j.chemosphere.2004.03.003 CrossRefGoogle Scholar
  30. Soclo HH, Garrigues P, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40(5):387–396CrossRefGoogle Scholar
  31. Tao YQ, Yao SC, Xue B, Deng JC, Wang XL, Feng MH, Hu WP (2010) Polycyclic aromatic hydrocarbons in surface sediments from drinking water sources of Taihu Lake, China: sources, partitioning and toxicological risk. J Environ Monitor 12(12):2282–2289. doi: 10.1039/C0em00144a CrossRefGoogle Scholar
  32. Timmer DK, de Loe RC, Kreutzwiser RD (2007) Source water protection in the Annapolis Valley, Nova Scotia: lessons for building local capacity. Land Use Policy 24(1):187–198. doi: 10.1016/j.landusepol.2005.05.005 CrossRefGoogle Scholar
  33. Wang Z, Chen JW, Yang P, Qiao XL, Tian F (2007) Polycyclic aromatic hydrocarbons in Dalian soils: distribution and toxicity assessment. J Environ Monitor 9(2):199–204. doi: 10.1039/B617338c CrossRefGoogle Scholar
  34. Wang JZ, Nie YF, Luo XL, Zeng EY (2008) Occurrence and phase distribution of polycyclic aromatic hydrocarbons in riverine runoff of the Pearl River Delta, China. Mar Pollut Bull 57(6–12):767–774. doi: 10.1016/j.marpolbu1.2008.01.007 CrossRefGoogle Scholar
  35. Willett KL, Gardinali PR, Sericano JL, Wade TL, Safe SH (1997) Characterization of the H4IIE rat hepatoma cell bioassay for evaluation of environmental samples containing polynuclear aromatic hydrocarbons (PAHs). Arch Environ Contam Toxicol 32(4):442–448CrossRefGoogle Scholar
  36. Wu B, Zhang Y, Zhang XX, Cheng SP (2011) Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: quantitative analysis based on published monitoring data. Sci Total Environ 410:112–118. doi: 10.1016/j.scitotenv.2011.09.046 CrossRefGoogle Scholar
  37. Zhang SY, Zhang QA, Darisaw S, Ehie O, Wang GD (2007) Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 66(6):1057–1069. doi: 10.1016/j.chemosphere.2006.06.067 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yu Liu
    • 1
  • Jimin Shen
    • 1
    Email author
  • Zhonglin Chen
    • 1
  • Nanqi Ren
    • 1
    • 2
  • Yifan Li
    • 1
    • 2
  1. 1.State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinChina

Personalised recommendations