Distribution of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements among protein fractions from hepatic cytosol of European chub (Squalius cephalus L.)

Abstract

Association of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements with cytosolic proteins of different molecular masses was described for the liver of European chub (Squalius cephalus) from weakly contaminated Sutla River in Croatia. The principal aim was to establish basic trace element distributions among protein fractions characteristic for the fish living in the conditions of low metal exposure in the water. The fractionation of chub hepatic cytosols was carried out by size exclusion high performance liquid chromatography (SE-HPLC; Superdex™ 200 10/300 GL column), and measurements were performed by high resolution inductively coupled plasma mass spectrometry (HR ICP-MS). Elution profiles of essential elements were mostly characterized by broad peaks covering wide range of molecular masses, as a sign of incorporation of essential elements in various proteins within hepatic cytosol. Exceptions were Cu and Fe, with elution profiles characterized by sharp, narrow peaks indicating their probable association with specific proteins, metallothionein (MT), and ferritin, respectively. The main feature of the elution profile of nonessential metal Cd was also single sharp, narrow peak, coinciding with MT elution time, and indicating almost complete Cd detoxification by MT under the conditions of weak metal exposure in the water (dissolved Cd concentration ≤0.3 μg L−1). Contrary, nonessential metal Pb was observed to bind to wide spectrum of proteins, mostly of medium molecular masses (30–100 kDa), after exposure to dissolved Pb concentration of ~1 μg L−1. The obtained information within this study presents the starting point for identification and characterization of specific metal/metalloid-binding proteins in chub hepatic cytosol, which could be further used as markers of metal/metalloid exposure or effect on fish.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

References

  1. Anan Y, Kunito T, Sakai H, Tanabe S (2002) Subcellular distribution of trace elements in the liver of sea turtles. Mar Pollut Bull 45:224–229

    Article  CAS  Google Scholar 

  2. Andreini C, Banci L, Bertini I, Rosato A (2005) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201

    Article  Google Scholar 

  3. Baudin JP, Fritsch AF (1989) Relative contributions of food and water in the accumulation of 60Co by a freshwater fish. Water Res 23:817–823

    Article  CAS  Google Scholar 

  4. Beers MH, Berkow R (eds) (1998) The Merck manual of diagnosis and therapy, 17th edn. Merck & Co., Whitehouse Station

    Google Scholar 

  5. Blust R (2012) Cobalt. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology: Homeostasis and toxicology of essential metals, vol 31A. Academic, London, pp 291–326

    Google Scholar 

  6. Boivin S, Aouffen M, Fournier A, Mateescu M (2001) Molecular characterization of human and bovine ceruloplasmin using MALDI-TOF mass spectrometry. Biochem Bioph Res Co 288:1006–1010

    Article  CAS  Google Scholar 

  7. Bonneris E, Giguère A, Perceval O, Buronfosse T, Masson S, Hare L, Campbell PGC (2005) Sub-cellular partitioning of metals (Cd, Cu, Zn) in the gills of a freshwater bivalve, Pyganodon grandis: role of calcium concretions in metal sequestration. Aquat Toxicol 71:319–334

    Article  CAS  Google Scholar 

  8. Bury NR, Boyle D, Cooper CA (2012) Iron. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology: Homeostasis and toxicology of essential metals, vol 31A. Academic, London, pp 201–251

    Google Scholar 

  9. de la Calle Guntińas MB, Bordin G, Rodriguez AR (2002) Identification, characterization and determination of metal-binding proteins by liquid chromatography. A review. Anal Bioanal Chem 374:369–378

    Article  Google Scholar 

  10. Dragun Z, Kapetanović D, Raspor B, Teskeredžić E (2011) Water quality of medium size watercourse under baseflow conditions: the case study of river Sutla in Croatia. Ambio 40:391–407

    Article  CAS  Google Scholar 

  11. Dragun Z, Fiket Ž, Vuković M, Raspor B (2012a) Multielement analysis in fish hepatic cytosol as a screening tool in the monitoring of natural waters. Environ Monit Assess. doi:10.1007/s10661-012-2734-6

  12. Dragun Z, Krasnići N, Strižak Ž, Raspor B (2012b) Lead concentration increase in the hepatic and gill soluble fractions of European chub—an early indicator of increased Pb exposure from the river water. Environ Sci Pollut R 19:2088–2095

    Google Scholar 

  13. Fekkes D, van Overmeeren E, Hennemann G, Visser TJ (1980) Solubilization and partial characterization of rat liver iodothyronine deiodinases. Biochim Biophys Acta 613:41–51

    Article  CAS  Google Scholar 

  14. Ferrarello CN, Fernandez de la Campa MR, Carrasco JF, Sanz-Medel A (2002) Speciation of metallothionein-like proteins of the mussel Mytilus edulis by orthogonal separation mechanisms with inductively coupled plasma–mass spectrometry detection: effect of selenium administration. Spectrochim Acta B 57:439–449

    Article  Google Scholar 

  15. Filipović Marijić V, Raspor B (2010) The impact of fish spawning on metal and protein levels in gastrointestinal cytosol of indigenous European chub. Comp Biochem Phys C 152:133–138

    Google Scholar 

  16. Filipović Marijić V, Raspor B (2012) Site-specific gastrointestinal metal variability in relation to the gut content and fish age of indigenous European chub from the Sava River. Water Air Soil Pollut. doi:10.1007/s11270-012-1233-2

  17. Fowler BA (1998) Roles of lead-binding proteins in mediating lead bioavailability. Environ Health Perspect 106(suppl 6):1585–1587

    Article  CAS  Google Scholar 

  18. Fridovich I, Freeman B (1986) Antioxidant defenses in the lung. Annu Rev Physiol 48:693–702

    Article  CAS  Google Scholar 

  19. Gellein K, Roos PM, Evje L, Vesterberg O, Flatena TP, Nordberg M, Syversen T (2007) Separation of proteins including metallothionein in cerebrospinal fluid by size exclusion HPLC and determination of trace elements by HR-ICP-MS. Brain Res 1174:136–142

    Article  CAS  Google Scholar 

  20. Goto D, Wallace WG (2010) Metal intracellular partitioning as a detoxification mechanism for mummichogs (Fundulus heteroclitus) living in metal-polluted salt marshes. Mar Environ Res 69:163–171

    Article  CAS  Google Scholar 

  21. Goyer RA (1983) Intracellular sites of toxic metals. Neurotoxicology 4:147–156

    CAS  Google Scholar 

  22. Heath AG (1987) Water pollution and fish physiology. CRC, Boca Raton

    Google Scholar 

  23. Hogstrand C, Lithner G, Haux C (1991) The importance of metallothionein for the accumulation of copper, zinc and cadmium in environmentally exposed perch, Perca fluviatilis. Pharmacol Toxicol 68:492–501

    Article  CAS  Google Scholar 

  24. Huang ZY, Shen JC, Zhuang ZX, Wang XR, Lee FSC (2004) Metallothionein as a biomarker for mercury in tissues of rat fed orally with cinnabar. Appl Organometal Chem 18:255–261

    Article  CAS  Google Scholar 

  25. Huang ZY, Zhang Q, Chen J, Zhuang ZX, Wang XR (2007) Bioaccumulation of metals and induction of metallothioneins in selected tissues of common carp (Cyprinus carpio L.) co-exposed to cadmium, mercury and lead. Appl Organomet Chem 21:101–107

    Article  CAS  Google Scholar 

  26. Iwai N, Watanabe C, Suzuki T, Suzuki KT, Tohyama C (1988) Metallothionein induction by sodium selenite at two different ambient temperature in mice. Arch Toxicol 62:447–451

    Article  CAS  Google Scholar 

  27. Janz DM (2012) Selenium. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology: Homeostasis and toxicology of essential metals, vol 31A. Academic, London, pp 327–374

    Google Scholar 

  28. Johnson JL, Rajagopalan KV (1976) Purification and properties of sulphite oxidase from human liver. J Clin Invest 58:543–550

    Article  CAS  Google Scholar 

  29. Jukola E, Hakkarainen J, Saloniemi H, Sankari S (1996) Blood selenium, vitamin E, vitamin A, and β-carotene concentrations and udder health, fertility treatments, and fertility. J Dairy Sci 79:838–845

    Article  CAS  Google Scholar 

  30. Kirschbaum J (1981) Cyanocobalamin. In: Florey K (ed) Analytical profiles of drug substances, vol 10. Academic, New York, pp 183–288

    Google Scholar 

  31. Kwong RWM, Andreś JA, Niyogi S (2011) Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: influence of elevated dietary iron. Aquat Toxicol 102:1–9

    Article  CAS  Google Scholar 

  32. Larsson A (1973) Thioredoxin reductase from rat liver. Eur J Biochem 35:346–349

    Article  CAS  Google Scholar 

  33. Libor S, Sundaram TK, Warwick R, Chapman JA, Grundy SMW (1979) Pyruvate carboxylase from a thermophilic Bacillus: some molecular characteristics. Biochemistry 18:3647–3653

    Article  CAS  Google Scholar 

  34. Liu N, Lo LS, Askary SH, Jones L, Kidane TZ, Trang T, Nguyen M, Goforth J, Chu Y-H, Vivas E, Tsai M, Westbrook T, Linder MC (2007) Transcuprein is a macroglobulin regulated by copper and iron availability. J Nutr Biochem 18:597–608

    Article  Google Scholar 

  35. Mager EM (2012) Lead. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology: Homeostasis and toxicology of non-essential metals, vol 31B. Elsevier Academic, London, pp 185–236

    Google Scholar 

  36. Martin-Antonio B, Jimenez-Cantizano RM, Salas-Leiton E, Infante C, Manchado M (2009) Genomic characterization and gene expression analysis of four hepcidin genes in the redbanded seabream (Pagrus auriga). Fish Shellfish Immun 26:483–491

    Article  CAS  Google Scholar 

  37. Mason AZ, Jenkins KD (1995) Metal detoxification in aquatic organisms. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. IUPAC, Wiley, New York, pp 479–512

    Google Scholar 

  38. Matz CJ, Krone PH (2007) Cell death, stress-responsive transgene activation, and deficits in the olfactory system of larval zebrafish following cadmium exposure. Environ Sci Technol 41:5143–5148

    Article  CAS  Google Scholar 

  39. McGeer JC, Niyogi S, Smith DS (2012) Cadmium. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology: Homeostasis and toxicology of non-essential metals, vol 31B. Elsevier Academic, London, pp 125–184

    Google Scholar 

  40. Mukherjee S, Kaviraj A (2009) Evaluation of growth and bioaccumulation of cobalt in different tissues of common carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae), fed cobalt-supplemented diets. Acta Ichthyol Pisc 39:87–93

    Article  Google Scholar 

  41. Paliwal VK, Kholi KK, Sharma M, Nath R (1986) Purification and characterization of metallothionein from liver of cadmium exposed rhesus monkeys (Macaca mulatta). Mol Cell Biochem 71:139–147

    Article  CAS  Google Scholar 

  42. Passerini A, Andreini C, Menchetti S, Rosato A, Frasconi P (2007) Predicting zinc binding at the proteome level. BMC Bioinform 8:39

    Article  Google Scholar 

  43. Pavičić J, Raspor B, Martinčić D (1993) Quantitative determination of metallothionein-like proteins in mussels. Methodological approach and field evaluation. Mar Biol 115:435–444

    Article  Google Scholar 

  44. Podrug M, Raspor B, Erk M, Dragun Z (2009) Protein and metal concentrations in two fractions of hepatic cytosol of the European chub (Squalius cephalus L.). Chemosphere 75:843–849

    Article  CAS  Google Scholar 

  45. Prange A, Schaumlöffel D (2002) Hyphenated techniques for the characterization and quantification of metallothionein isoforms. Anal Bioanal Chem 373:441–453

    Article  CAS  Google Scholar 

  46. Reichert JF, Jarosik N, Herrick R, Andersen J (1979) Observation of electron spin resonance of negative ions in liquid 3He. Phys Rev Lett 42:1359–1361

    Article  CAS  Google Scholar 

  47. Reid SD (2002) Physiological impact of acute molybdenum exposure in juvenile kokanee salmon (Oncorhynchus nerka). Comp Biochem Physiol C 133:355–367

    Google Scholar 

  48. Reid SD (2012) Molybdenum and chromium. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology: Homeostasis and toxicology of essential metals, vol 31A. Academic, London, pp 375–415

    Google Scholar 

  49. Richardson JS, Thomas KA, Rubin BH, Richardson DC (1975) Crystal structure of bovine Cu, Zn superoxide dismutase at 3 Å resolution: chain tracing and metal ligands. Proc Nat Acad Sci USA 72:1349–1353

    Article  CAS  Google Scholar 

  50. Ricketts CD (2009) The effect of acute waterborne exposure of sub-lethal concentrations of molybdenum on the stress response in rainbow trout (Oncorhynchus mykiss). University of British Columbia, Okanagan, MSc thesis

    Google Scholar 

  51. Roesijadi G, Robinson WE (1994) Metal regulation in aquatic animals: mechanisms of uptake, accumulation, and release. In: Malins DC, Ostrander GK (eds) Aquatic toxicology: Molecular, biochemical, and cellular perspectives. CRC, Boca Raton, pp 387–420

    Google Scholar 

  52. Sanchez W, Palluel O, Meunier L, Coquery M, Porcher J-M, Aît-Aïssa S (2005) Copper-induced oxidative stress in the three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19:177–183

    Article  CAS  Google Scholar 

  53. Schäfer U (2004) Manganese. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment: occurrence, analysis and biological relevance, vol 2, Metals and their compounds. Wiley-VCH, Weinheim, pp 901–930

    Google Scholar 

  54. Shulgin KK, Popova TN, Rakhmanova TI (2008) Isolation and purification of glutathione peroxidase. Appl Bioch Micro 44:247–250

    Article  CAS  Google Scholar 

  55. Singh RA, Singh SN (1990) Purification and properties of liver arginase from teleostean fish Clarias batrachus (L.). Arch Physiol Biochem 98:411–419

    Article  CAS  Google Scholar 

  56. Smith QR, Rabin O, Chikhale EG (1997) Delivery of metals to brain and the role of the blood–brain barrier. In: Connor JR (ed) Metals and oxidative damage in neurological disorders. Plenum, New York, pp 113–130

    Google Scholar 

  57. Solomon EI, Lowery MD (1993) Electronic structure contributions to function in bioinorganic chemistry. Science 259:1575–1581

    Article  CAS  Google Scholar 

  58. Szpunar J, Lobinski R (1999) Species-selective analysis for metal-biomacromolecular complexes using hyphenated techniques. Pure Appl Chem 71:899–918

    Article  CAS  Google Scholar 

  59. Truglio JJ, Theis K, Leimkühler S, Rappa R, Rajagopalan KV, Kisker C (2002) Crystal structures of the active and alloxanthine inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure 10:115–125

    Article  CAS  Google Scholar 

  60. Uchida H, Kondo D, Yamashita A, Nagaosa Y, Sakurai T, Fujii Y, Fujishiro K, Aisaka K, Uwajima T (2003) Purification and characterization of an aldehyde oxidase from Pseudomonas sp. KY 4690. FEMS Microbiol Lett 229:31–36

    Article  CAS  Google Scholar 

  61. Vacchina V, Polec K, Szpunar J (1999) Speciation of cadmium in plant tissues by size-exclusion chromatography with ICP-MS detection. J Anal At Spectrom 14:1557–1566

    Article  CAS  Google Scholar 

  62. Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–485

    Article  CAS  Google Scholar 

  63. Vutukuru SS, Chintada S, Madhavi KR, Rao JV, Anjaneyulu Y (2006) Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiol Biochem 32:221–229

    Article  CAS  Google Scholar 

  64. Waalkes MP, Klaassen CD (1985) Concentration of metallothionein in major organs of rats after administration of various metals. Fundam Appl Toxicol 5:473–477

    Article  CAS  Google Scholar 

  65. Wang J, Dreessen D, Wiederin DR, Houk RS (2001) Measurement of trace elements in proteins extracted from liver by size exclusion chromatography-inductively coupled plasma–mass spectrometry with a magnetic sector mass spectrometer. Anal Biochem 288:89–96

    Article  CAS  Google Scholar 

  66. Wang WX, Rainbow PS (2006) Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ Chem 3:395–399

    Article  CAS  Google Scholar 

  67. Zuo P, Qu W, Cooper RN, Goyer RA, Diwan BA, Waalkes MP (2009) Potential role of α-synuclein and metallothionein in lead-induced inclusion body formation. Toxicol Sci 111:100–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the Ministry of Science, Education and Sport of the Republic of Croatia (project no. 098-0982934-2721) is acknowledged. This study was carried out as a part of the Monitoring of freshwater fishery in 2009—Group D—Fishing area Sava River, Sutla River, funded by Ministry of Agriculture, Fisheries and Rural Development of the Republic of Croatia. Special thanks are due to our colleagues from the Laboratory for Aquaculture and Pathology of Aquatic Organisms for collaboration on the common fish sampling, to Željka Strižak, B.Sc. for the assistance in the field work and metal analyses, as well as to Dr. Nevenka Mikac from the Laboratory for Inorganic Environmental Geochemistry for the opportunity to use HR ICP-MS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zrinka Dragun.

Additional information

Responsible editor: Vera Slaveykova

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 722 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krasnići, N., Dragun, Z., Erk, M. et al. Distribution of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements among protein fractions from hepatic cytosol of European chub (Squalius cephalus L.). Environ Sci Pollut Res 20, 2340–2351 (2013). https://doi.org/10.1007/s11356-012-1105-8

Download citation

Keywords

  • European chub
  • Hepatic cytosol
  • Trace elements
  • Proteins
  • SE-HPLC
  • HR ICP-MS