Environmental Science and Pollution Research

, Volume 20, Issue 4, pp 2046–2053 | Cite as

Bulk atmospheric deposition of persistent toxic substances (PTS) along environmental gradients in Brazil

  • Rodrigo Ornellas MeireEmail author
  • Admir Créso Targino
  • João Paulo Machado Torres
11th Forum of the International HCH and Pesticide Association


Bulk atmospheric deposition measurements for selected persistent toxic substances (PTS) were performed along environment gradients (urban–suburban–rural–background sites) in Brazil. The aim with this work is to investigate the fate of PTS and their emissions in South America, particularly along environment transects. Bulk sampler systems (polyurethane foams, 1 × 1 m2) were fixed along environment gradients (urban–suburban–rural–background) over summer and winter periods (2005–2007) at sites of different climate zones of Brazil. Organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) were analyzed by gas chromatography coupled to electron capture detector (Shimadzu 2010, 20i GC-ECD). Urban sites reported the highest deposition rates for all PTS, ranging from tens to thousands of pictograms per square meter per day. Basically, there were no obvious seasonal differences in deposition rate concentrations for PTS along the urban–suburban–rural–background gradient. Dichlorodiphenyltrichloroethane (DDT) and its metabolites were the OCs most frequently detected at relatively high deposition rate levels (>1,000 pg m−2 day−1). Other legacy and current-use pesticides such as hexachlorocyclohexanes, endosulfans, hexachlorcyclobenzine, dieldrin, aldrin, metoxichlor, and chlodanes were also detected at lower deposition rate levels (10–100 pg m−2 day−1). PCBs were detected at extremely high deposition rate levels (1,000–10,000 pg m−2 day−1) with highest contributions from the tetra-PCBs (PCB-52, PCB-44, PCB-66, PCB-81, and PCB-77) and penta-PCB congeners (PCB-101, PCB-105, PCB-114, PCB-118, and PCB-126). The greatest deposition rate concentrations for total PCBs were mainly detected at urban sites in connection with high population densities. The observed high deposition rate concentrations for PCBs and DDTs at urban sites are probably associated with old PTS stocks emissions. For PCBs in particular, the high levels are strongly associated with local population densities, highlighting the effect of local/regional urban sources on these target PTS. These results are important to show that even though the use of PTS is regulated, the deposition of selected PTS is still impacted by local and regional emissions in Brazil and may be related to the historical and continued emissions from old PTS stocks.


Persistent toxic substances (PTS) Atmospheric deposition Organochlorine pesticides PCBs Environment gradients Brazil 



This work was partially funded by CNPq–Prosul (014/2006, Brazil) and CAPES–“Ciências do Mar” (no. 09/2009). The authors would like to acknowledge the “Instituto Chico Mendes de Biodiversidade” (ICMBio) for technical support and for granting permission to deploy equipments at the two national parks monitored in this study. Dr. Torres is a researcher of CNPq-level 2, “Jovem Cientista do Nosso Estado” (FAPERJ), and Advance Fellow at the Mount Sinai School of Medicine, and is funded by Grant 1D43TW00640.

Supplementary material

11356_2012_1072_MOESM1_ESM.doc (890 kb)
ESM 1 (DOC 889 kb)


  1. Almeida FV, Bisinoti MC, Jardim WF (2007) Persistent toxic substance (PTS) in Brazil. Química Nova 30(8):1976–1985, ISSN 0100-4042CrossRefGoogle Scholar
  2. Azeredo A, Torres JPM, Fonseca MF, Lailson-Britto J, Bastos WR, Azevedo-Silva CE, Cavalcanti G, Meire RO, Sarcinelli PN, Cláudio L, Markowitz S, Malm O (2008) DDT and its metabolites in breast milk from the Madeira river basin in the Amazon, Brazil. Chemosphere 73:S246–S251. doi: 10.1016/j.chemosphere.2007.04.090 CrossRefGoogle Scholar
  3. Azevedo-Silva CE, Azeredo A, Lailson-Brito J, Torres JPM, Malm O (2007) Polychlorinated biphenyls and DDT in swordfish (Xiphias gladius) and blue shark (Prionace glauca) from Brazilian coast. Chemosphere 67(9):48–53. doi: 10.1016/j.chemosphere.2006.05.089 CrossRefGoogle Scholar
  4. Azevedo-Silva CE, Azeredo A, Dias ACL, Costa P, Lailson-Brito J, Torres JPM, Malm O, Guimarães JRD, Torres JPM (2009) Organochlorine compounds in sharks from the Brazilian coast. Mar Pollut Bull 58:290–311. doi: 10.1016/j.marpolbul.2008.11.003 CrossRefGoogle Scholar
  5. Brasil (2009) Casa Civil, Lei no 11936 of 14 May in 2009. At: Accessed March 2010.
  6. Cunha LST, Torres JPM, Muñoz-Armanz J, Jimenez B (2012) Evaluation of the possible adverse effects of legacy persistent organic pollutants (POPs) on the brown booby (Sula leucogaster) along the Brazilian coast. Chemosphere 81:1039–1044. doi: 10.1016/j.chemosphere.2012.02.009 CrossRefGoogle Scholar
  7. Daly GL, Wania F (2005) Organic contaminants in mountains. Environ Sci Technol 39(2):385–398. doi: 10.1021/es048859u CrossRefGoogle Scholar
  8. D'Amato C, Torres JPM, Malm O (2002) DDT (dicloro difenil tricloroetano): toxicidade e contaminação ambiental - uma revisão. Química Nova 25(6):995–1002, ISSN 0100-4042CrossRefGoogle Scholar
  9. Dorneles PR, Lailson-Brito J, Azevedo AF, Meyer J, Vidal LG, Fragoso AB, Torres JPM, Malm O, Blust R, Das K (2008) High accumulation of perfluorooctane sulfonate (PFOS) in marine Tucuxi dolphins (Sotalia guianensis) from the Brazilian coast environ. Part Sci Technol 42(14):5368–5373. doi: 10.1021/es800702k CrossRefGoogle Scholar
  10. Estellano VRH, Pozo K, Harner T, Franken M, Zaballa M (2008) Altitudinal and seasonal variations of persistent organic pollutants in the Bolivian Andes mountains. Environ Sci Technol 42:2528–2534. doi: 10.1021/es702754m CrossRefGoogle Scholar
  11. Harner T, Pozo K, Gouin T, Macdonald AM, Hung H, Cainey J, Peters A (2006) Global pilot study for persistent organic pollutants (POPs) using PUF disk passive air samplers. Environ Pollut 2(144):445–452. doi: 10.1016/j.envpol.2005.12.053 CrossRefGoogle Scholar
  12. IBGE (2010) Instituto Brasileiro de Geografia e Estatística. At: Accessed December 2010.
  13. Karlsson H, Muir DCG, Teixiera C, Burniston DA, Strachan WMJ, Hecky RE, Mwita J, Bootsman HA, Grift NP, Kidd KA, Rosenberg B (2000) Persistent chlorinated pesticides in air, water, and precipitation from the Lake Malawi area, southern Africa. Environ Sci Technol 34:4490–4495. doi: 10.1021/es001053j CrossRefGoogle Scholar
  14. Lailson-Brito J, Dorneles PR, Azevedo-Silva CE, Azevedo AF, Vidal LG, Zanelatto RC, Lozinski CPC, Azeredo A, Fragoso ABL, Cunha HA, Torres JPM, Malm O (2010) High organochlorine accumulation in blubber of Guiana dolphin, Sotalia guianensis, from Brazilian coast and its use to establish geographical differences among populations. Environ Pollut 5(158):1800–1808. doi: 10.1016/j.envpol.2009.11.002 CrossRefGoogle Scholar
  15. Li YF (1999) Global technical hexachlorocylohexane usage and its contamination consequences in environment: from 1948 to1997. Sci Total Environ 232(3). doi: 10.1016/S0048-9697(99)00114-X
  16. Li YF, Macdonald RW (2005) Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Sci Total Environ 342:87–106. doi: 10.1016/j.scitotenv.2004.12.027 CrossRefGoogle Scholar
  17. Liu X, Zhang G, Li J, Yu L, Xu Y, Li X, Kobara Y, Jones KC (2009) Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities. Environ Sci Technol 43:1316–1321. doi: 10.1021/es802371n CrossRefGoogle Scholar
  18. Livingstone DM (2005) Anthropogenic influences on the environmental status of remote mountain lakes. Aquat Sci 67:221–223. doi: 10.1007/s00027-005-0010-3 Google Scholar
  19. Mackay D, Ying W, Ma K, Lee SC (2006) Handbook of physical-chemical properties and environmental fate for organic chemical (second edition). Taylor & Francis Group, FloridaGoogle Scholar
  20. Meire RO, Lee SC, Yao Y, Torres JPM, Harner T (2010) Seasonal and altitudinal variations of legacy and current-use pesticides in the Brazilian tropical and subtropical mountains. Organohalogen Compounds 72:164–167, ISSN 1026-4892Google Scholar
  21. Pereira MS, Waller U, Reifenhäuser W, Torres JPM, Malm O, Körner W (2007a) Persistent organic pollutants in atmospheric deposition and biomonitoring with Tillandsia usneoides (L.) in an industrialized area in Rio de Janeiro state, south east Brazil—part I: PCDD and PCDF. Chemosphere 67(9):1728–1735. doi: 10.1016/j.chemosphere.2006.05.145 CrossRefGoogle Scholar
  22. Pereira MS, Heitmann D, Reifenhäuser W, Meire RO, Santos LS, Torres JPM, Malm O, Körner W (2007b) Persistent organic pollutants in atmospheric deposition and biomonitoring with Tillandsia usneoides (L.) in an industrialized area in Rio de Janeiro state, southeast Brazil—part II: PCB and PAH. Chemosphere 67(9):1736–1745. doi: 10.1016/j.chemosphere.2006.05.141 CrossRefGoogle Scholar
  23. Pozo K, Harner T, Lee SC, Wania F, Muir DCG, Jones KC (2009) Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environ Sci Technol 43:796–803. doi: 10.1021/es802106a CrossRefGoogle Scholar
  24. Saldanha GC, Torres JPM, Bastos WR, Claudio L, Henkelmann B, Schramm KW (2009) Organic pollutants in human hair from Brazilian Amazon. Organohalogen Compd 71:771–774, ISSN 1026-4892Google Scholar
  25. Santos CYM, Azevedo DAA, Neto FRA (2004) Atmospheric distribution of organic compounds from urban areas near a coal-fired power station. Atmos Environ 38(9):1247–1257. doi: 10.1016/j.atmosenv.2003.11.026 CrossRefGoogle Scholar
  26. Shunthirasingham C, Barra R, Gonzalo Mendoza G, Montory M, Oyiliagu CE, Lei YD, Wania F (2010) Spatial variability of atmospheric semivolatile organic compounds in Chile. Atmos Environ 45(2):303–309. doi: 10.1016/j.atmosenv.2010.10.027 CrossRefGoogle Scholar
  27. Souza AS, Torres JPM, Meire RO, Neves RC, Couri MS, Serejo CS (2008) Organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in sedimento and crabs (Chasmagnathus granulate, Dana, 1851) from mangroves of Guanabara Bay, Rio de Janeiro State, Brazil. Chemosphere 73:S186–S192. doi: 10.1016/j.chemosphere.2007.04.093 CrossRefGoogle Scholar
  28. Torres JPM, Pfeiffer WC, Markowitz S, Pause R, Malm O, Japenga J (2002) Dichlorodiphenyltrichloroethane in soil, river sediment, and fish in the Amazon in Brazil. Environ Res 88(2):134–139. doi: 10.1006/enrs.2001.4312 CrossRefGoogle Scholar
  29. Torres JPM, Lailson-Brito J, Saldanha GC, Dorneles P, Azevedo-Silva CE, Malm O, Guimarães JR, Azeredo A, Bastos WR, Silva VMF, Martin AR, Cláudio L, Markowitz S (2009) Persistent toxic substances in the Brazilian Amazon: contamination of man and the environment. J Braz Chem Soc 20(6):1175–1179, ISSN 0103-5053CrossRefGoogle Scholar
  30. UNEP (2001) United Nations Environmental Programme. Stockholm protocol on persistent organic pollutants. UNEP-Chemicals, GenevaGoogle Scholar
  31. UNEP (2002) United Nations Environmental Programme, regionally based assessment of persistent toxic substances. Region XI Eastern and Western South America. UNEP-Chemicals, Viña del Mar, Chile, 91 pagesGoogle Scholar
  32. UNEP–United Nations Environmental Programme (2009) Stockholm protocol on persistent organic pollutants. UNEP-Chemicals Geneva, Switzerland. At: Accessed September 2010.
  33. Vieira EDR, Torres JPM, Malm O (2001) DDT environmental persistence from its use in a vector control program: a case study. Environ Res Sec A 86:174–182. doi: 10.1006/enrs.2001.4258 CrossRefGoogle Scholar
  34. Wang W, Gong P, Yao T, Jones K (2010) Passive air sampling of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers. Environ Sci Technol 44:2988–2993. doi: 10.1021/es9033759 CrossRefGoogle Scholar
  35. Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, Hermanson M, Hung H, Bidleman T (2010) Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408(15):2966–2984. doi: 10.1016/j.scitotenv.2009.10.077 CrossRefGoogle Scholar
  36. WHO (World Health Organization) (1979) DDT and its derivatives. Environmental Health Criteria Series 9. WHO, Geneva.Google Scholar
  37. Yao Y, Tuduri L, Harner T, Blanchard P, Waite D, Poissant L, Murphy C, Belzer W, Aulagnier F, Li Y, Sverko E (2006) Spatial and temporal distribution of pesticides air concentrations in Canadian agricultural regions. Atmos Environ 40:4339–4351. doi: 10.1016/j.atmosenv.2006.03.039 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rodrigo Ornellas Meire
    • 1
    Email author
  • Admir Créso Targino
    • 2
  • João Paulo Machado Torres
    • 1
  1. 1.Biophysics Institute, CCSRio de Janeiro Federal UniversityRio de JaneiroBrazil
  2. 2.Federal Technological University of ParanáLondrinaBrazil

Personalised recommendations