Skip to main content

Advertisement

Log in

Invertebrates control metal/metalloid sequestration and the quality of DOC/DON released during litter decay in slightly acidic environments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plant litter and organic sediments are a main sink for metals and metalloids in aquatic ecosystems. The effect of invertebrate shredder (a key species in litter decay) on metal/metalloid fixation by organic matter is described only under alkaline water conditions whereas for slightly acidic waters nothing can be found. Furthermore, less is known about the effect of invertebrate shredders on the quality of dissolved organic carbon (DOC) and nitrogen (DON) released during litter decay. We conducted an experiment to investigate the impact of invertebrate shredder (Gammarus pulex) on metal/metalloid fixation/remobilization and on the quality of DOC/DON released under slightly acidic water conditions. During decomposition of leaf litter, invertebrate shredder facilitated significantly the emergence of smaller particle sizes of organic matter. The capacity of metal fixation was significantly higher in smaller particles (POM 2,000–63 μm) compared to original leaf litter and litter residues. Thus, G. pulex enhanced metal fixation by organic partition of sediments by increasing the amount of smaller particle of organic matter in aquatic ecosystems. In contrast, the capacity of metal/metalloid fixation in the smallest fraction of POM (<63 μm) was lower compared with leaf residues in treatment without invertebrates. Remobilization of metals and metalloids was very low for all measured elements. A significant effect of invertebrates on quantitative formation of DOC/DON was confirmed. The quality of released DOC/DON, which may affect metal/metalloid remobilization, was also significantly affected by invertebrate shredders (e.g., more carboxylates). Hence, invertebrate shredder enhanced significantly the fixation of metals/metalloids into POM in slightly acidic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulla HAN, Minor EC, Dias RF, Hatcher PG (2010) Changes in the compound classes of dissolved organic matter along an estuarine transect: a study using FTIR and (13)C NMR. Geochim Cosmochim Acta 74:3815–3838

    Article  CAS  Google Scholar 

  • Ardon M, Pringle CM (2007) The quality of organic matter mediates the response of heterotrophic biofilms to phosphorus enrichment of the water column and substratum. Freshw Biol 52:1762–1772

    Article  CAS  Google Scholar 

  • Baborowski M, Bozau E (2006) Impact of former mining activities on the uranium distribution in the River Saale (Germany). Appl Geochem 21:1073–1082

    Article  CAS  Google Scholar 

  • Benfield EF (2007) Decomposition of leaf material. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Elsevier, San Diego, pp 711–720

    Chapter  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter. Springer, Berlin, 286 pp

    Google Scholar 

  • Brandenburg K, Seydel U (2002) Vibrational spectroscopy of carbohydrates and glycoconjugates. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, applications in life, pharmaceutical and natural sciences, vol. 5. Wiley, Chichester, UK, pp 3481–3507

  • Burton ED, Bush RT, Sullivan LA, Johnston SG, Hocking RK (2008) Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil. Chem Geol 253:64–73

    Article  CAS  Google Scholar 

  • Camilleri JC (1992) Leaf-litter processing by invertebrates in a mangrove forest in Queensland. Mar Biol 114:139–145

    Google Scholar 

  • Canhoto C, Graca M, Bärlocher F (2005) Feeding preferences of shredders. In: Graca M, Bärlocher F, Gessner MO (eds) Methods in study litter decomposition. Springer, Dordrecht, pp 297–302

    Chapter  Google Scholar 

  • Dienemann H, Dienemann C, Dudel EG (2006) Influence of allochthonous plant litter on fixiation of uranium in sediments. In: Merkel B, Hasche-Berger A (eds) Uranium in the environment. Springer, Berlin, pp 149–157

    Chapter  Google Scholar 

  • Dinelli E, Lucchini F, Fabbri M, Cortecci G (2001) Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper mine area (Ligurian Apennines, Italy). J Geochem Explor 74:141–152

    Article  CAS  Google Scholar 

  • DIN-EN-13805 (2002) Lebensmittel - Bestimmung von Elementspuren – Druckaufschluss, Deutsche Fassung, Deutsches Institut für Normung, Berlin

  • DIN-EN-1484 (1997) Anleitung zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs. Deutsches Institut für Normung, Berlin

    Google Scholar 

  • DIN-EN-ISO-17294-2 (2004) Wasserbeschaffenheit - Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) — Teil 2: Bestimmung von 62 Elementen (ISO 17294-2:2003). Deutsche Fassung EN ISO 17294-2:2004, Deutsches Institut für Normung, Berlin

    Google Scholar 

  • DIN-ISO-10694 (1995) Soil quality — Determination of organic and total carbon after dry combustion (elementary analysis) (ISO 10694:1995). Deutsches Institut für Normung, Berlin

    Google Scholar 

  • Felten V, Charmantier G, Mons R, Geffard A, Rousselle P, Coquery M, Garric J, Geffard O (2008) Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat Toxicol 86:413–425

    Article  CAS  Google Scholar 

  • Flemming H-C, Schmitt J, Marshall KC (1996) Sorption properties of biofilms. In: Calmano W, Förstner U (eds) Sediments and toxic substances. Springer, Berlin, pp 115–147

    Chapter  Google Scholar 

  • Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the "House of Biofilm Cells". J Bacteriol 189:7945–7947

    Article  CAS  Google Scholar 

  • Franken RJM, Waluto B, Peeters E, Gardeniers JJP, Beijer JAJ, Scheffer M (2005) Growth of shredders on leaf litter biofilms: the effect of light intensity. Freshw Biol 50:459–466

    Article  Google Scholar 

  • Gatzweiler AT, Jakubick AT, Kiessig G (2004) Remediation options and the significance of water treatment at former uranium production sites in Eastern Germany. In: (IAEA) IAEA (ed) Treatment of liquid effluent from uranium mines and mills. IAEA, Vienna, pp 127–144

    Google Scholar 

  • Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams — a review. Int Rev Hydrobiol 86:383–393

    Article  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    Article  Google Scholar 

  • Horne FR (1968) Nitrogen excretion in crustacea: I. Herbivorous land crab Cardisoma guanhumi Latreille. Comp Biochem Physiol 26:687

    Article  CAS  Google Scholar 

  • Karbassi AR, Monavari SM, Bidhendi GRN, Nouri J, Nematpour K (2008) Metal pollution assessment of sediment and water in the Shur River. Environ Monit Assess 147:107–116

    Article  CAS  Google Scholar 

  • Kolokassidou K, Szymczak W, Wolf M, Obermeier C, Buckau G, Pashalidis I (2009) Hydrophilic olive cake extracts: characterization by physicochemical properties and Cu(II) complexation. J Hazard Mater 164:442–447

    Article  CAS  Google Scholar 

  • Kulesza AE, Holomuzki JR (2006) Amphipod performance responses to decaying leaf litter of Phragmites australis and Typha angustifolia from a Lake Erie coastal marsh. Wetlands 26:1079–1088

    Article  Google Scholar 

  • Levinton J (1995) Bioturbators as ecosystem engineers: control of the sediment fabric, Inter-individual interactions and material fluxes. In: Jones CG (ed) Linking species and ecosystems. Chapman & Hall, New York, pp 29–36

    Chapter  Google Scholar 

  • Mao JD, Hu WG, Schmidt-Rohr K, Davies G, Ghabbour EA, Xing BS (2000) Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci Soc Am J 64:873–884

    Article  CAS  Google Scholar 

  • Meijering MPD (1991) Lack of oxygen and low pH as limiting factors for Gammarus in Hessian brooks and rivers. Hydrobiologia 223:159–169

    Article  Google Scholar 

  • Pirog TP (1997) Role of Acinetobacter sp. exopolysaccharides in protection against heavy metal ions. Microbiology 66:284–288

    CAS  Google Scholar 

  • Rosas C, Cuzon G, Taboada G, Pascual C, Gaxiola G, Van Wormhoudt A (2001) Effect of dietary protein and energy levels on growth, oxygen consumption, haemolymph and digestive gland carbohydrates, nitrogen excretion and osmotic pressure of Litopenaeus vannamei (Boone) and L-setiferus (Linne) juveniles (Crustacea, Decapoda; Penaeidae). Aquac Res 32:531–547

    Article  CAS  Google Scholar 

  • Sachs S, Brendler V, Geipel G (2007) Uranium(VI) complexation by humic acid under neutral pH conditions studied by laser-induced fluorescence spectroscopy. Radiochim Acta 95:103–110

    Article  CAS  Google Scholar 

  • Schaller J, Weiske A, Mkandawire M, Dudel EG (2008) Enrichment of uranium in particulate matter during litter decomposition affected by Gammarus pulex L. Environ Sci Technol 42:8721–8726

    Article  CAS  Google Scholar 

  • Schaller J, Mkandawire M, Dudel EG (2010a) Heavy metals and arsenic fixation into freshwater organic matter under Gammarus pulex L. influence. Environ Pollut 158:2454–2458

    Article  CAS  Google Scholar 

  • Schaller J, Weiske A, Mkandawire M, Dudel EG (2010b) Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere 79:169–173

    Article  CAS  Google Scholar 

  • Schaller J, Brackhage C, Mkandawire M, Dudel EG (2011) Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review. Sci Total Environ 409:4891–4898

    Article  CAS  Google Scholar 

  • Schorer M, Eisele M (1997) Accumulation of inorganic and organic pollutants by biofilms in the aquatic environment. Water Air Soil Pollut 99:651–659

    CAS  Google Scholar 

  • Tipping E, Smith EJ, Lawlor AJ, Hughes S, Stevens PA (2003) Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Environ Pollut 123, 239v253

  • Wallace TA, Ganf GG, Brookes JD (2008) A comparison of phosphorus and DOC leachates from different types of leaf litter in an urban environment. Freshw Biol 53:1902–1913

    Article  CAS  Google Scholar 

  • Welton JS (1979) Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshw Biol 9:263–275

    Article  Google Scholar 

  • Zhang XQ, Bishop PL (2003) Biodegradability of biofilm extracellular polymeric substances. Chemosphere 50:63–69

    Article  CAS  Google Scholar 

  • Zhao LYL, Schulin R, Nowack B (2009) Cu and Zn mobilization in soil columns percolated by different irrigation solutions. Environ Pollut 157:823–833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schaller.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, J., Machill, S. Invertebrates control metal/metalloid sequestration and the quality of DOC/DON released during litter decay in slightly acidic environments. Environ Sci Pollut Res 19, 3942–3949 (2012). https://doi.org/10.1007/s11356-012-0975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0975-0

Keywords

Navigation