Abstract
Continental-scale distribution and inter-continental transport of four polychlorinated biphenyl (PCB) congeners (28, 101, 153, 180) from 1950 to 2010 were studied using the global multicompartment chemistry transport model MPI-MCTM. Following identical primary emissions for all PCB congeners into air, most of the burden is stored in terrestrial (soil and vegetation) compartments. Thereby, PCB-28, PCB-101 and PCB-153 show a shift of the soil burden maxima from source to remote regions. This shift is downwind with regard to the westerlies for Eurasia and upwind for North America and more prominent for the lighter PCBs than for PCB-153 or PCB-180. In meridional direction, all congeners’ distributions underwent a northward migration in Eurasia and North America since the 1950s. Inter-continental transport from Eurasian sources accounts largely for contamination of Alaska and British Columbia and determines the migration of the PCB distribution in soil in North America. Trans-Pacific transport occurs mainly in the gas phase in boreal winter (December–January–February) at 3–4 km altitude and is on a multi-year time scale strongly linked to the atmospheric pressure systems over the Pacific. Inter-continental transport of the lighter, more volatile PCBs is more efficient than for the heavier PCBs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alcock RE, Johnston AE, McGrath SP, Berrow ML, Jones KC (1993) Long-term changes in the polychlorinated biphenyl content of United Kingdom soils. Environ Sci Technol 27:1918–1923
Atlas E, Giam CS (1981) Global transport of organic pollutants: ambient concentrations in the remote marine atmosphere. Science 211:163–165
Bailey R, Barrie LA, Halsall CJ, Fellin P, Muir DCG (2000) Atmospheric organochlorine pesticides in the western Canadian Arctic: evidence of transpacific transport. J Geophys Res 105:11805–11811
Breivik K, Sweetman A, Pacyna JM, Jones KC (2002) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 2. Emissions. Sci Total Environ 290:199–224
Breivik K, Sweetman A, Pacyna JM, Jones KC (2007) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach. 3. An update. Sci Total Environ 377:296–307
Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighi M (1991) Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environ Sci Tech 25:1489–1495
Cousins IT, Beck AJ, Jones KC (1999) A review of the processes involved in the exchange of semivolatile organic compounds (SVOC) across the air–soil interface. Sci Total Environ 228:5–24
Eisenreich SJ, Capel PD, Robbins JA, Bourbonniere R (1989) Accumulation and diagenesis of chlorinated hydrocarbons in lacustrine sediments. Environ Sci Technol 23:1116–1126
Finizio A, Mackay D, Bidleman T, Harner T (1997) Octanol–air partitioning coefficient as a predictor of partitioning of semivolatile organic chemicals to aerosols. Atmos Environ 31:2289–2296
Gevao B, Jones KC, Semple K, Craven A, Burauel P (2003) Nonextractable pesticide residues in soil. Environ Sci Technol 37:138A–144A
Guglielmo F, Lammel G, Maier-Reimer, E (2009) Global environmental cycling of DDT and γ-HCH the 1980s—a study using a coupled atmosphere and ocean general circulation model. Chemosphere 76:1509–1517
Gusev A, Mantseva E, Rozovskaya O, Shatalov V, Vulykh N, Aas W, Breivik K (2007) Persistent organic pollutants in the environment. Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe. EMEP status report no. 3/2007, 95 pp
Hillery B, Basu I, Sweet C, Hites R (1997) Temporal and spatial trends in a long-term study of gas phase PCB concentrations near the Great Lakes. Environ Sci Technol 31:1811–1816
Hofmann L, Stemmler I, Lammel G (2012) The impact of organochlorines cycling in the cryosphere on their global distributions and fate—part 2: land ice and temporary snow cover. Environ Pollut 162:482–488
Huang P, Gong SL, Zhao TL, Neary L, Barrie LA (2007) GEM/POPs: a global 3-D dynamic model for semi-volatile persistent organic pollutants—part 2: global transports and budgets of PCBs. Atmos Chem Phys 7:4015–4025
Hung H, Kallenborn R, Breivik K, Su YS, Brorström-Lundén E, Olafsdottir K, Thorlacius JM, Leppänen S, Bossi R, Skov H, Manø S, Patton GW, Stern G, Sverko E, Fellin P (2010) Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. Sci Total Environ 408:2854–2873
Jaeglé L, Jaffe DA, Price HU, Weiss-Penzias P, Palmer PI, Evans MJ, Jacob DJ, Bey I (2003) Sources and budgets for CO and O3 in the northeastern Pacific during the spring of 2001: results from the PHOBEA-II experiment. J Geophys Res 108:8802. doi:10.1029/2002JD003121
Jaffe D, McKendry I, Anderson T, Price H (2003) Six ‘new’ episodes of trans-Pacific transport of air pollutants. Atmos Environ 37:391–404
Lehnik-Habrink P, Hein S, Win T, Bremser W, Nehls I (2010) Multi-residue analysis of PAH, PCB, and OCP optimized for organic matter of forest soil. J Soil Sed 10:1487–1498
Liang Q, Jaeglé L, Wallace JM (2005) Meteorological indices for Asian outflow and transpacific transport on daily to interannual timescales. J Geophys Res 110:D18308. doi:10.1029/2005JD005788
Ma J, Huang H, Blanchard P (2004) How do climate fluctuations affect persistent organic pollutant distribution in North America? Evidence from a decade of air monitoring. Environ Sci Technol 38:2538–2543
Macdonald RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DJ, Semkin RG, Strachan WMJ, Li YF, Wania F, Alaee M, Alexeeva LB, Bailey SMBR, Bewers JM, Gobeil C, Halsall CJ, Harner T, Hoff JT, Jantunen LMM, Lockhart WL, Mackay D, Muir DCG, Pudykiewicz J, Reimer KJ, Smith JN, Stern GA, Schroeder WH, Wagemann R, Yunker MB (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 254:93–234
Maier-Reimer E (1993) Geochemical cycles in an ocean general circulation model—preindustrial tracer distributions. Global Biogeochem Cycles 7:645–677
Maier-Reimer E, Kriest I, Segschneider J, Wetzel P (2005) The HAMburg Ocean Carbon Cycle Model HAMOCC5.1—Technical Description Release 1.1. MPI Reports on Earth System Science vol. 14, 57 pp
Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max–Planck-Institute global ocean-sea ice model with orthogonal curve linear coordinates. Ocean Modeling 5:91–127
Meijer SN, Ockenden WA, Steinnes E, Corrigan BP, Jones KC (2003) Spatial and temporal trends of POPs in Norwegian and UK background air: implications for global cycling. Environ Sci Technol 37:454–461
Rapaport RA, Eisenreich SJ (1988) Historical atmospheric inputs of high-molecular-weight chlorinated hydrocarbons to eastern North America. Environ Sci Technol 22:931–941
Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5 part 1: Model description. MPI Report No. 349, Max Planck Institute for Meteorology, Hamburg, Germany, 127 pp
Scholtz MT, Bidleman TF (2007) Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: part II. Projected long-term fate of pesticide residues. Sci Total Environ 377:61–80
Schreitmüller J, Vigneron M, Bacher R, Ballschmiter K (1994) Pattern analysis of polychlorinated biphenyls (PCB) in marine air of the Atlantic Ocean. Int J Environ Anal Chem 57:33–52
Semeena VS, Lammel G (2005) The significance of the grasshopper effect on the atmospheric distribution of persistent organic substances. Geophys Res Lett 32:L07804. doi:10.1029/2004GL022229
Semeena VS, Feichter J, Lammel G (2006) Significance of regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants—examples of DDT and γ-HCH. Atmos Chem Phys 6:1231–1248
Simcik M, Basu I, Sweet C, Hites RA (1999) temperature dependence and temporal trends of polychlorinated biphenyl congeners in the Great Lakes atmosphere. Environ Sci Technol 33:1991–1995
Six KD, Maier-Reimer E (1996) Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Glob Biogeochem Cycles 10:559–583
Smit AAMFR, Leistra M, van den Berg F (1997) Estimation method for the volatilisation of pesticides from fallow soil. Environmental Planning Bureau series 2. DLO Winand Staring Centre, Wageningen, 107 pp
Smit AAMFR, Leistra M, van den Berg F (1998) Estimation method for the volatilisation of pesticides from plants. Environmental Planning Bureau series 4. DLO Winand Staring Centre, Wageningen, 101 pp
Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Schulz M, Balkanski Y, Boucher O, Minikin A, Petzold A (2005) The aerosol climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156
Sweetman AJ, Jones KC (2000) Declining PCB concentrations in the UK atmosphere: evidence and possible causes. Environ Sci Technol 34:863–869
United Nations Environment Programme (UNEP) (2001) The Stockholm convention on persistent organic pollutants (POPs). www.pops.int
Wallace JM, Grutzler DS (1981) Teleconnections in the geopotential height field during Northern Hemisphere winter. Mon Weather Rev 109:785–812
Wania F, Daly G (2002) Estimating the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs. Atmos Environ 36:5581–5593
Wania F, Mackay D (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22:10–18
Wania F, Su Y (2004) Quantifying the global fractionation of polychlorinated biphenyls. Ambio 33:161–168
Wise EK, Comrie AC (2005) Extending the Kolmogorov–Zurbenko filter: application to ozone, particulate matter, and meteorological trends. J Air Waste Manag Assoc 55:1208–1216
Zhang LS, Ma JM, Venkatesh S, Li YF, Cheung P (2008) Modeling evidence of episodic intercontinental long-range transport of lindane. Environ Sci Technol 42:8791–8797
Acknowledgements
The model runs were performed on the IBM Power6 computer at the German Climate Computing Centre (DKRZ). This project was supported by the European Commission (7th FWP R&D 226534, ArcRisk).
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Ake Bergman
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOC 4442 kb)
Rights and permissions
About this article
Cite this article
Stemmler, I., Lammel, G. Long-term trends of continental-scale PCB patterns studied using a global atmosphere–ocean general circulation model. Environ Sci Pollut Res 19, 1971–1980 (2012). https://doi.org/10.1007/s11356-012-0943-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-012-0943-8