Environmental Science and Pollution Research

, Volume 19, Issue 6, pp 1971–1980 | Cite as

Long-term trends of continental-scale PCB patterns studied using a global atmosphere–ocean general circulation model

  • Irene Stemmler
  • Gerhard Lammel
POPs Workshop, ten years after the signature of the Stockholm convention


Continental-scale distribution and inter-continental transport of four polychlorinated biphenyl (PCB) congeners (28, 101, 153, 180) from 1950 to 2010 were studied using the global multicompartment chemistry transport model MPI-MCTM. Following identical primary emissions for all PCB congeners into air, most of the burden is stored in terrestrial (soil and vegetation) compartments. Thereby, PCB-28, PCB-101 and PCB-153 show a shift of the soil burden maxima from source to remote regions. This shift is downwind with regard to the westerlies for Eurasia and upwind for North America and more prominent for the lighter PCBs than for PCB-153 or PCB-180. In meridional direction, all congeners’ distributions underwent a northward migration in Eurasia and North America since the 1950s. Inter-continental transport from Eurasian sources accounts largely for contamination of Alaska and British Columbia and determines the migration of the PCB distribution in soil in North America. Trans-Pacific transport occurs mainly in the gas phase in boreal winter (December–January–February) at 3–4 km altitude and is on a multi-year time scale strongly linked to the atmospheric pressure systems over the Pacific. Inter-continental transport of the lighter, more volatile PCBs is more efficient than for the heavier PCBs.


Polychlorinated biphenyls Trans-Pacific transport Long-range transport Inter-continental transport Persistent organic pollutants Modelling 



The model runs were performed on the IBM Power6 computer at the German Climate Computing Centre (DKRZ). This project was supported by the European Commission (7th FWP R&D 226534, ArcRisk).

Supplementary material

11356_2012_943_MOESM1_ESM.doc (4.3 mb)
ESM 1 (DOC 4442 kb)


  1. Alcock RE, Johnston AE, McGrath SP, Berrow ML, Jones KC (1993) Long-term changes in the polychlorinated biphenyl content of United Kingdom soils. Environ Sci Technol 27:1918–1923CrossRefGoogle Scholar
  2. Atlas E, Giam CS (1981) Global transport of organic pollutants: ambient concentrations in the remote marine atmosphere. Science 211:163–165CrossRefGoogle Scholar
  3. Bailey R, Barrie LA, Halsall CJ, Fellin P, Muir DCG (2000) Atmospheric organochlorine pesticides in the western Canadian Arctic: evidence of transpacific transport. J Geophys Res 105:11805–11811CrossRefGoogle Scholar
  4. Breivik K, Sweetman A, Pacyna JM, Jones KC (2002) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach: 2. Emissions. Sci Total Environ 290:199–224CrossRefGoogle Scholar
  5. Breivik K, Sweetman A, Pacyna JM, Jones KC (2007) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach. 3. An update. Sci Total Environ 377:296–307CrossRefGoogle Scholar
  6. Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighi M (1991) Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environ Sci Tech 25:1489–1495CrossRefGoogle Scholar
  7. Cousins IT, Beck AJ, Jones KC (1999) A review of the processes involved in the exchange of semivolatile organic compounds (SVOC) across the air–soil interface. Sci Total Environ 228:5–24CrossRefGoogle Scholar
  8. Eisenreich SJ, Capel PD, Robbins JA, Bourbonniere R (1989) Accumulation and diagenesis of chlorinated hydrocarbons in lacustrine sediments. Environ Sci Technol 23:1116–1126CrossRefGoogle Scholar
  9. Finizio A, Mackay D, Bidleman T, Harner T (1997) Octanol–air partitioning coefficient as a predictor of partitioning of semivolatile organic chemicals to aerosols. Atmos Environ 31:2289–2296CrossRefGoogle Scholar
  10. Gevao B, Jones KC, Semple K, Craven A, Burauel P (2003) Nonextractable pesticide residues in soil. Environ Sci Technol 37:138A–144ACrossRefGoogle Scholar
  11. Guglielmo F, Lammel G, Maier-Reimer, E (2009) Global environmental cycling of DDT and γ-HCH the 1980s—a study using a coupled atmosphere and ocean general circulation model. Chemosphere 76:1509–1517Google Scholar
  12. Gusev A, Mantseva E, Rozovskaya O, Shatalov V, Vulykh N, Aas W, Breivik K (2007) Persistent organic pollutants in the environment. Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe. EMEP status report no. 3/2007, 95 ppGoogle Scholar
  13. Hillery B, Basu I, Sweet C, Hites R (1997) Temporal and spatial trends in a long-term study of gas phase PCB concentrations near the Great Lakes. Environ Sci Technol 31:1811–1816CrossRefGoogle Scholar
  14. Hofmann L, Stemmler I, Lammel G (2012) The impact of organochlorines cycling in the cryosphere on their global distributions and fate—part 2: land ice and temporary snow cover. Environ Pollut 162:482–488CrossRefGoogle Scholar
  15. Huang P, Gong SL, Zhao TL, Neary L, Barrie LA (2007) GEM/POPs: a global 3-D dynamic model for semi-volatile persistent organic pollutants—part 2: global transports and budgets of PCBs. Atmos Chem Phys 7:4015–4025CrossRefGoogle Scholar
  16. Hung H, Kallenborn R, Breivik K, Su YS, Brorström-Lundén E, Olafsdottir K, Thorlacius JM, Leppänen S, Bossi R, Skov H, Manø S, Patton GW, Stern G, Sverko E, Fellin P (2010) Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. Sci Total Environ 408:2854–2873CrossRefGoogle Scholar
  17. Jaeglé L, Jaffe DA, Price HU, Weiss-Penzias P, Palmer PI, Evans MJ, Jacob DJ, Bey I (2003) Sources and budgets for CO and O3 in the northeastern Pacific during the spring of 2001: results from the PHOBEA-II experiment. J Geophys Res 108:8802. doi: 10.1029/2002JD003121 CrossRefGoogle Scholar
  18. Jaffe D, McKendry I, Anderson T, Price H (2003) Six ‘new’ episodes of trans-Pacific transport of air pollutants. Atmos Environ 37:391–404CrossRefGoogle Scholar
  19. Lehnik-Habrink P, Hein S, Win T, Bremser W, Nehls I (2010) Multi-residue analysis of PAH, PCB, and OCP optimized for organic matter of forest soil. J Soil Sed 10:1487–1498CrossRefGoogle Scholar
  20. Liang Q, Jaeglé L, Wallace JM (2005) Meteorological indices for Asian outflow and transpacific transport on daily to interannual timescales. J Geophys Res 110:D18308. doi: 10.1029/2005JD005788 CrossRefGoogle Scholar
  21. Ma J, Huang H, Blanchard P (2004) How do climate fluctuations affect persistent organic pollutant distribution in North America? Evidence from a decade of air monitoring. Environ Sci Technol 38:2538–2543CrossRefGoogle Scholar
  22. Macdonald RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DJ, Semkin RG, Strachan WMJ, Li YF, Wania F, Alaee M, Alexeeva LB, Bailey SMBR, Bewers JM, Gobeil C, Halsall CJ, Harner T, Hoff JT, Jantunen LMM, Lockhart WL, Mackay D, Muir DCG, Pudykiewicz J, Reimer KJ, Smith JN, Stern GA, Schroeder WH, Wagemann R, Yunker MB (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 254:93–234CrossRefGoogle Scholar
  23. Maier-Reimer E (1993) Geochemical cycles in an ocean general circulation model—preindustrial tracer distributions. Global Biogeochem Cycles 7:645–677Google Scholar
  24. Maier-Reimer E, Kriest I, Segschneider J, Wetzel P (2005) The HAMburg Ocean Carbon Cycle Model HAMOCC5.1—Technical Description Release 1.1. MPI Reports on Earth System Science vol. 14, 57 ppGoogle Scholar
  25. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max–Planck-Institute global ocean-sea ice model with orthogonal curve linear coordinates. Ocean Modeling 5:91–127Google Scholar
  26. Meijer SN, Ockenden WA, Steinnes E, Corrigan BP, Jones KC (2003) Spatial and temporal trends of POPs in Norwegian and UK background air: implications for global cycling. Environ Sci Technol 37:454–461CrossRefGoogle Scholar
  27. Rapaport RA, Eisenreich SJ (1988) Historical atmospheric inputs of high-molecular-weight chlorinated hydrocarbons to eastern North America. Environ Sci Technol 22:931–941CrossRefGoogle Scholar
  28. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5 part 1: Model description. MPI Report No. 349, Max Planck Institute for Meteorology, Hamburg, Germany, 127 ppGoogle Scholar
  29. Scholtz MT, Bidleman TF (2007) Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: part II. Projected long-term fate of pesticide residues. Sci Total Environ 377:61–80CrossRefGoogle Scholar
  30. Schreitmüller J, Vigneron M, Bacher R, Ballschmiter K (1994) Pattern analysis of polychlorinated biphenyls (PCB) in marine air of the Atlantic Ocean. Int J Environ Anal Chem 57:33–52CrossRefGoogle Scholar
  31. Semeena VS, Lammel G (2005) The significance of the grasshopper effect on the atmospheric distribution of persistent organic substances. Geophys Res Lett 32:L07804. doi: 10.1029/2004GL022229 CrossRefGoogle Scholar
  32. Semeena VS, Feichter J, Lammel G (2006) Significance of regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants—examples of DDT and γ-HCH. Atmos Chem Phys 6:1231–1248CrossRefGoogle Scholar
  33. Simcik M, Basu I, Sweet C, Hites RA (1999) temperature dependence and temporal trends of polychlorinated biphenyl congeners in the Great Lakes atmosphere. Environ Sci Technol 33:1991–1995CrossRefGoogle Scholar
  34. Six KD, Maier-Reimer E (1996) Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Glob Biogeochem Cycles 10:559–583Google Scholar
  35. Smit AAMFR, Leistra M, van den Berg F (1997) Estimation method for the volatilisation of pesticides from fallow soil. Environmental Planning Bureau series 2. DLO Winand Staring Centre, Wageningen, 107 ppGoogle Scholar
  36. Smit AAMFR, Leistra M, van den Berg F (1998) Estimation method for the volatilisation of pesticides from plants. Environmental Planning Bureau series 4. DLO Winand Staring Centre, Wageningen, 101 ppGoogle Scholar
  37. Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Schulz M, Balkanski Y, Boucher O, Minikin A, Petzold A (2005) The aerosol climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156CrossRefGoogle Scholar
  38. Sweetman AJ, Jones KC (2000) Declining PCB concentrations in the UK atmosphere: evidence and possible causes. Environ Sci Technol 34:863–869CrossRefGoogle Scholar
  39. United Nations Environment Programme (UNEP) (2001) The Stockholm convention on persistent organic pollutants (POPs).
  40. Wallace JM, Grutzler DS (1981) Teleconnections in the geopotential height field during Northern Hemisphere winter. Mon Weather Rev 109:785–812Google Scholar
  41. Wania F, Daly G (2002) Estimating the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs. Atmos Environ 36:5581–5593CrossRefGoogle Scholar
  42. Wania F, Mackay D (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22:10–18Google Scholar
  43. Wania F, Su Y (2004) Quantifying the global fractionation of polychlorinated biphenyls. Ambio 33:161–168Google Scholar
  44. Wise EK, Comrie AC (2005) Extending the Kolmogorov–Zurbenko filter: application to ozone, particulate matter, and meteorological trends. J Air Waste Manag Assoc 55:1208–1216CrossRefGoogle Scholar
  45. Zhang LS, Ma JM, Venkatesh S, Li YF, Cheung P (2008) Modeling evidence of episodic intercontinental long-range transport of lindane. Environ Sci Technol 42:8791–8797Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Max Planck Institute for ChemistryMainzGermany
  2. 2.Research Centre for Toxic Compounds in the EnvironmentMasaryk UniversityBrnoCzech Republic

Personalised recommendations