Skip to main content
Log in

Removal of anionic azo dye from aqueous solution via an adsorption–photosensitized regeneration process on a TiO2 surface

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Textile dye effluents are typically characterized by strong color and recalcitrance, even at very low concentration. The process of enrichment of anionic azo dye on the surface of TiO2 fibers followed by photosensitization degradation under ambient air conditions was extensively investigated. Adsorption isotherms and zeta potentials were used to describe the “dye/TiO2 surface” interface, taking into account the effects of pH on the nature and population of the surface groups on the TiO2 fibers. The extent of the photocatalytic degradation of dye on TiO2 surface was determined by FTIR. N2 adsorption isotherms and optical spectra were employed to investigate the effect of photosensitization. The adsorption of dyes on the TiO2 surface occurs via electrostatic attraction through the formation of single- or multidentate-coordinated surface complexes. Almost complete photobleaching of the absorption band at 534 nm is achieved in ~4 h. Dye-sensitized TiO2 fiber could absorb part of the visible light spectrum (λ < 600 nm). Interfacial electron transfer can potentially alter the degradation efficiency. The regenerated TiO2 fiber could be reused for subsequent decolorization without a decline in adsorption efficiency compared with freshly prepared TiO2 samples, which may be attributed to preservation of the hierarchical pore structure and restoration of the original surface properties. In summary, we propose an efficient “adsorption–photoregeneration–reuse” process applying TiO2 fibers for the degradation of dyes in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  Google Scholar 

  • Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2006) Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J Hazard Mater 135:171–179

    Article  CAS  Google Scholar 

  • Bandara J, Mielczarski JA, Kiwi J (1999) 2. Photosensitized degradation of azo dyes on Fe, Ti, and Al oxides. Mechanism of charge transfer during the degradation. Langmuir 15:7670–7679

    Article  CAS  Google Scholar 

  • Bao N, Wei ZT, Ma ZH, Liu F, Yin GB (2010) Si-doped mesoporous TiO2 continuous fibers: preparation by centrifugal spinning and photocatalytic properties. J Hazard Mater 174:129–136

    Article  CAS  Google Scholar 

  • Bao N, Yin GB, Wei ZT, Li Y, Ma ZH (2011a) Preparation of TiO2 continuous fibers with oxygen vacancies and photocatalytic activity. Integr Ferroelectr 127:97–105

    Article  CAS  Google Scholar 

  • Bao N, Li Y, Wei ZT, Yin GB, Niu JJ (2011b) Adsorption of dyes on hierarchical mesoporous TiO2 fibers and its enhanced photocatalytic properties. J Phys Chem C 115:5708–5719

    Article  CAS  Google Scholar 

  • Bourikas K, Stylidi M, Kondarides DI, Verykios XE (2005) Adsorption of acid orange 7 on the surface of titanium dioxide. Langmuir 21:9222–9230

    Article  CAS  Google Scholar 

  • Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

    Article  CAS  Google Scholar 

  • Cho YM, Choi WY, Lee CH, Hyeon T, Lee HI (2001) Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol 35:966–970

    Article  CAS  Google Scholar 

  • Choi SK, Kim S, Lim SK, Park H (2010) Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. J Phys Chem C 114:16475–16480

    Article  CAS  Google Scholar 

  • Duncan WR, Stier WM, Prezhdo OV (2005) Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin–TiO2 interface. J Am Chem Soc 127:7941–7951

    Article  CAS  Google Scholar 

  • Geethakarthi A, Phanikumar BR (2011) Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye. Environ Sci Pollut R 19:656–665

    Article  Google Scholar 

  • Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK, Gerven TV, Bruggen BVD, Vandecasteele C (2005) Removal of dyes from wastewater using bottom ash. Ind Eng Chem Res 44:3655–3664

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Krishnan L, Mittal J (2006a) Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interf Sci 293:16–26

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006b) Removal and recovery of the hazardous azo dye, acid orange 7 through adsorption over waste materials—bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007a) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interf Sci 309:464–69

    Article  CAS  Google Scholar 

  • Gupta VK, Mathur M, Sikarwar S, Mittal A (2007b) Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J Environ Manage 85:956–964

    Article  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007c) Defluoridation of wastewaters using waste carbon slurry. Water Res 41:3307–3316

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007d) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interf Sci 315:87–93

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007e) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interf Sci 312:292–296

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment a review. Crit Rev Env Sci Tec 39:783–842

    Article  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012a) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Agarwal S, Nayak A, Shrivastava M (2012b) Photodegradation of hazardous dye quinoline yellow catalyzed by TiO2. J Colloid Interf Sci 366:135–140

    Article  CAS  Google Scholar 

  • Ho WK, Yu JC, Lee SC (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun 111:1115–1117

    Article  Google Scholar 

  • Jing LQ, Xin BF, Yuan FL, Xue LP, Wang BQ, Fu HG (2006) Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J Phys Chem B 110:17860–17865

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  • Kyung H, Lee J, Choi W (2005) Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environ Sci Technol 39:2376–2382

    Article  CAS  Google Scholar 

  • Li D, Haneda H, Hishita S, Ohashi N (2005) Visible-light-driven N − F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem Mater 17:2596–2602

    Article  CAS  Google Scholar 

  • Liao GZ, Chen S, Quan X, Zhang YB, Zhao HM (2011) Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl Catal B Environ 102:126–131

    Article  CAS  Google Scholar 

  • Lun P, Zou JJ, Zhang XW, Wang L (2011) Water-mediated promotion of dye sensitization of TiO2 under visible light. J Am Chem Soc 133:10000–10002

    Article  Google Scholar 

  • Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide–fluoride system. Langmuir 16:2632–2641

    Article  CAS  Google Scholar 

  • Mittal A, Gupta VK (2010) Adsorptive removal and recovery of the azo dye Eriochrome Black T. Toxicol Environ Chem 92:1813–1823

    Article  CAS  Google Scholar 

  • Mittal A, Krishnan L, Gupta VK (2005) Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya. Sep Purif Technol 43:125–133

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Gupta VK (2009a) Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J Colloid Interf Sci 340:16–26

    Article  CAS  Google Scholar 

  • Mittal A, Kaur D, Mittal J (2009b) Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials. J Hazard Mater 163:568–577

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010a) Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (yellowish) by waste material adsorbents. J Colloid Interf Sci 342:518–527

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Gupta VK (2010b) Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interf Sci 344:497–507

    Article  CAS  Google Scholar 

  • Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K (2004) Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys Chem Chem Phys 6:865–870

    Article  CAS  Google Scholar 

  • Netpradit S, Thiravetyan P, Towprayoon S (2003) Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Res 37:763–772

    Article  CAS  Google Scholar 

  • Ravikovitch PI, Haller GL, Neimark AV (1998) Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. Adv Colloid Interface Sci 76–77:203–226

    Article  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Sajjad AKL, Shamaila S, Tian BZ, Chen F, Zhang JL (2010) Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J Hazard Mater 177:781–791

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Stylidi M, Kondarides DI, Verykios XE (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B Environ 40:271–286

    Article  CAS  Google Scholar 

  • Thommes M, Smarsly B, Groenewolt M, Ravikovitch PI, Neimark AV (2006) Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22:756–764

    Article  CAS  Google Scholar 

  • Uğurlu M, Karaoğlu MH (2008) Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as photocatalyst. Environ Sci Pollut R 16:265–273

    Google Scholar 

  • Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ Sci Technol 30:1660–1666

    Article  CAS  Google Scholar 

  • Vohra MS, Kim S, Choi WJ (2003) Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. J Photochem Photobiol A Chem 160:55–60

    Article  CAS  Google Scholar 

  • Zhao JC, Chen CC, Ma WH (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35:269–278

    Article  CAS  Google Scholar 

  • Zhao D, Chen CC, Wang YF, Ma WH, Zhao JC, Rajh T, Zang L (2008) Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: structure, interaction, and interfacial electron transfer. Environ Sci Technol 42:308–314

    Article  CAS  Google Scholar 

  • Zhou JK, Lv L, Yu J, Li HL, Guo PZ (2008) Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light. J Phys Chem C 112:5316–5321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Science Foundation of Shandong Province, China (No. ZR2011BM005), the Scientific Technology Research and Development Program of Shandong Province, China (No. 2010GZX20605), and the National Science Foundation of China (No. 21176144). The authors thank Dr. Pamela Holt for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Bao.

Additional information

Resposible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, N., Li, Y., Yu, XH. et al. Removal of anionic azo dye from aqueous solution via an adsorption–photosensitized regeneration process on a TiO2 surface. Environ Sci Pollut Res 20, 897–906 (2013). https://doi.org/10.1007/s11356-012-0937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0937-6

Keywords

Navigation