Skip to main content
Log in

Air–dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aquatic and terrestrial associations of phototrophic and heterotrophic microorganisms active in hydrocarbon bioremediation have been described earlier. The question arises: do similar consortia also occur in the atmosphere? Dust samples at the height of 15 m were collected from Kuwait City air, and analyzed microbiologically for phototrophic and heterotrophic hydrocarbon-utilizing microorganisms, which were subsequently characterized according to their 16S rRNA gene sequences. The hydrocarbon utilization potential of the heterotrophs alone, and in association with the phototrophic partners, was measured quantitatively. The chlorophyte Gloeotila sp. and the two cyanobacteria Nostoc commune and Leptolyngbya thermalis were found associated with dust, and (for comparison) the cynobacteria Leptolyngbya sp. and Acaryochloris sp. were isolated from coastal water. All phototrophic cultures harbored oil vapor-utilizing bacteria in the magnitude of 105 g−1. Each phototrophic culture had its unique oil-utilizing bacteria; however, the bacterial composition in Leptolyngbya cultures from air and water was similar. The hydrocarbon-utilizing bacteria were affiliated with Acinetobacter sp., Aeromonas caviae, Alcanivorax jadensis, Bacillus asahii, Bacillus pumilus, Marinobacter aquaeolei, Paenibacillus sp., and Stenotrophomonas maltophilia. The nonaxenic cultures, when used as inocula in batch cultures, attenuated crude oil in light and dark, and in the presence of antibiotics and absence of nitrogenous compounds. Aqueous and diethyl ether extracts from the phototrophic cultures enhanced the growth of the pertinent oil-utilizing bacteria in batch cultures, with oil vapor as a sole carbon source. It was concluded that the airborne microbial associations may be effective in bioremediating atmospheric hydrocarbon pollutants in situ. Like the aquatic and terrestrial habitats, the atmosphere contains dust-borne associations of phototrophic and heterotrophic hydrocarbon-utilizing bacteria that are active in hydrocarbon attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan SS (2012) The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J Environ Manag 93:113–120

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Salamah S, Eliyas M, Radwan SS (2010) Oil-bioremediation potential of Arabain Gulf mud flats rich in diazotrophic hydrocarbon-utilizing bacteria. Int Biodeter Biodegrad 64:218–225

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schafter AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Amato P, Menager M, Sancelme M, Laj P, Mailhot G, Delort AM (2005) Microbial population in cloud water at the Puy de Dume: implications for the chemistry of clouds. Atmos Environ 39:4143–4153

    Article  CAS  Google Scholar 

  • Amato P, Parazols M, Sancelme M, Mailhot G, Laj P, Delort AM (2007) An important oceanic source of micro-organisms for cloud water at the Puy de Dome (France). Atmos Environ 41:8253–8263

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1997) Microbial ecology, fundamentals and applications, 4th edn. Benjamin Cummings, California

    Google Scholar 

  • Blumthaler M, Ambach W, Rehwald W (1992) Solar UV-A and UV-B radiation fluxes at two alpine stations at different altitudes. Theor Appl Climatol 46:39–44

    Article  Google Scholar 

  • Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R, Knight R, Fierer N (2009) Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 75:5121–5130

    Article  CAS  Google Scholar 

  • Brinkhoff T, Santegoeds CM, Sahm K, Kuever J, Muyzer G (1998) A polyphasic approach to study the diversity of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden Sea. Appl Environ Microbiol 64:4650–4657

    CAS  Google Scholar 

  • Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104:299–304

    Article  CAS  Google Scholar 

  • Burrows SM, Elber W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere—part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280

    Article  CAS  Google Scholar 

  • Fahlgren C, Hagstrom A, Nilsson D, Zweifel UL (2010) Annual variations in the diversity, viability and origin of airborne bacteria. Appl Environ Microbiol 76:3015–3025

    Article  CAS  Google Scholar 

  • Fiere N, Liu Z, Rodriguez-Hernandez M, Knight R, Henn M, Hernandez MT (2008) Short-term temporal variability in airborne bacterial and fungal populations. Appl Environ Microbiol 74:200–207

    Article  Google Scholar 

  • Fuzzi S, Mandrioli P, Perfetto A (1997) Fog droplets: an atmospheric source of secondary biological aerosol particles. Atmos Environ 31:287–290

    Article  CAS  Google Scholar 

  • Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507

    Article  Google Scholar 

  • Hube AE, Heyduck-Söller B, Fischer U (2009) Phylogenetic classification of heterotrophic bacteria associated with filamentous marine cyanobacteria in culture. Syst Appl Microbiol 32:256–265

    Article  CAS  Google Scholar 

  • Jones B, Grant W, Duckworth A, Owenson G (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  CAS  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  Google Scholar 

  • Kiske CR, Banton KL, Adorada DL, Strak PC, Hill KK, Jackson PJ (1998) Small scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 64:2463–2472

    Google Scholar 

  • Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. Adv Microb Physiol 5:1–43

    Article  CAS  Google Scholar 

  • Lighthart B, Shaffer BT (1995) Airborne bacteria in the atmospheric surface layer: temporal distribution above a grass seed field. Appl Environ Microbiol 61:1492–1496

    CAS  Google Scholar 

  • Mancinelli RL, Shulls WA (1978) Airborne bacteria in an urban environment. Appl Environ Microbiol 35:1095–1101

    CAS  Google Scholar 

  • Marita R (1975) Psychrophilic bacteria. Microbiol Mol Biol Rev 39:144–167

    Google Scholar 

  • Maron PA, Lejon DPH, Carvalho E, Bizet K, Lemanceau P, Ranjard L, Mougel C (2005) Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos Environ 39:3687–3695

    Article  CAS  Google Scholar 

  • Millner PD (2009) Bioaerosols associated with animal production operations. Bioresour Technol 100:5379–5385

    Article  CAS  Google Scholar 

  • Moletta-Denat M, Bru-Adan V, Delgenes JP, Hamelin J, Wery N, Godon JJ (2010) Selective microbial aerosolization in biogas demonstrated by quantitative PCR. Bioresour Technol 101:7252–7257

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    Google Scholar 

  • Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157

    Article  CAS  Google Scholar 

  • Radosevich JL, Wilson WJ, Shinn JH, DeSantis TZ, Andersen GL (2002) Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Lett Appl Microbiol 34:162–167

    Article  CAS  Google Scholar 

  • Radwan SS (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian Gulf. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology, vol 13. Springer, Heidelberg, pp 275–297

    Chapter  Google Scholar 

  • Radwan SS, Al-Hasan RH (2001) Potential application of coastal biofilm-coated gravel particles for treating oily waste. Aquat Microb Ecol 23:113–117

    Article  Google Scholar 

  • Radwan SS, Al-Hasan RH, Salamah S, Khanafer M (2005) Oil-consuming microbial consortia floating in the Arabian Gulf. Int Biodeter Biodegrad 56:28–33

    Article  CAS  Google Scholar 

  • Radwan SS, Mahmoud H, Khanafer M, Al-Habib A, Al-Hasan R (2010) Bacterial consortia with combined potential for hydrocarbon-utilization and nitrogen-fixation from epilithic biofilms along the Arabian Gulf coasts. Microb Ecol 60:354–363

    Article  CAS  Google Scholar 

  • Raltledge C (1978) Degradation of aliphatic hydrocarbons. In: Watkinson I (ed) Developments in biodeterioration of hydrocarbons, vol 1. Applied Science, Essex, pp 1–45

    Google Scholar 

  • Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175–216

    CAS  Google Scholar 

  • Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27

    Article  CAS  Google Scholar 

  • Rotheschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 2:383–392

    Article  Google Scholar 

  • Santegoeds CM, Ferdelman TG, Muyzer G, Beer D (1998) Structural and functional dynamics of sulfate-reduction populations in bacterial biofilms. Appl Environ Microbiol 64:3731–3739

    CAS  Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophy Res Lett 28:239–242

    Article  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk H, Zillig W (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising Archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    CAS  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude oil and hydrocarbon degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  CAS  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Radwan SS, Hopner T (1992) Self-cleaning of the gulf. Nature 359:109

    Article  Google Scholar 

  • Sorkhoh NA, Al-Mailem DM, Ali N, Al-Awadhi H, Salamah S, Eliyas M, Radwan SS (2011) Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves. Int Biodeter Biodeg 65:797–802

    Article  CAS  Google Scholar 

  • Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified Fjord (Maiagar Fjord, Denmark) as evaluated by most-probable number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tong Y, Lighthart B (1999) Diurnal distribution of total and culturable atmospheric bacteria at rural site. Aerosol Sci Tech 30:246–254

    Article  CAS  Google Scholar 

  • Tong Y, Lighthart B (2000) The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Sci Tech 32:393–403

    Article  CAS  Google Scholar 

  • Warneck P (1988) Chemistry of the natural atmosphere. Academic, New York

    Google Scholar 

  • Wawer C, Muyzer G (1995) Genetic diversity of Desulfouvibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl Environ Microbiol 62:2203–2210

    Google Scholar 

  • Womack AM, Bohannan BJM, Green JL (2010) Biodiversity and biogeography of the atmosphere. Phil Trans R Soc B 365:3645–3653

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the University of Kuwait, Research Grant SL 09/08. Thanks are due to the SAF unit and GRF, Kuwait University for providing GLC (GS 02/01) and the genetic analyzer (GS 01/02) facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Radwan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Bader, D., Eliyas, M., Rayan, R. et al. Air–dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation. Environ Sci Pollut Res 19, 3997–4005 (2012). https://doi.org/10.1007/s11356-012-0897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0897-x

Keywords

Navigation